Application of PBPK Modelling for Prediction of FMO Metabolism Using Benzydamine as a Probe for FMO3

CERTARA ${ }^{\text {º }}$

H Humphries, S Neuhoff and I Gardner

Simcyp Ltd (a Certara company), Blades Enterprise Centre, Sheffield, S2 4SU

BACKGROUND

Benzydamine N-oxidation is often used as a probe reaction for characterisation FMO3 activity in vitro (Fig. 1). However, there are a lack of validated methods or extrapolating in vitro hepatic $\mathrm{CL}_{\text {int }}$ for FMO to in vivo clearance (IVIVE).
Fisher et al. (2002) ${ }^{[1]}$ have previously shown an over-estimation of in vivo FMO3 clearance using in vitro human liver microsomal (HLM) or human hepatocyte (HHEP) CL int for benzydamine.

$$
\text { Benzydamine } N \text {-oxide } \quad \text { Benzydamine } \quad \text { Norbenzydamine }
$$

$\begin{aligned} & \text { Figure 1. Benzydamine } N \text {-oxygenation and } N \text {-demethylation pathways mediated by HLM Adapted from } \\ & \text { Taniguchi-Takizawa et al,, } 20151111 \text {. Fraction metabolised values calculated using data from the same study }\end{aligned}$
$\begin{aligned} & \text { Taniguchi- Takizawa et al., } 201 \text { '1ill). Fraction met } \\ & \text { assuming } 2 \% \text { renal excretory limination (} C L_{R} \text {) }\end{aligned}$

- Several rare loss-of-function variants of FMO3 have been associated with an inability to metabolise trimethylamine and a characteristic 'fish-odour syndrome', However, it is thought that variability in drug metabolism may be more likely to be affected by altered, but functional $\mathrm{FMO}^{[2]}$
The impact of individual FMO3 variants on drug metabolism in vivo is not clear However, the cis-linked variants Glu158Lys and Glu308Gly appear to contribute to reduced FMO3 activity when expressed together but not individuall
benzydamine N-oxidation activity was 0.6 -fold of wild-type activity in vitro) ${ }^{[2,3]}$
- A study with 179 Caucasian volunteers has indicated that the Glu 158 Lys and Glu308Gly variants are expressed together at a haplotype frequency of $16.5 \%{ }^{[4]}$.

AIMS

- To assess via IVIVE the ability to predict in vivo benzydamine FMO3 metabolism using in vitro data from 3 literature sources and thereby expand the work of Fisher et al. (2002) ${ }^{[1]}$
- To develop a PBPK model to assess the pharmacokinetics of benzydamine and the potential impact of phenotype differences in benzydamine N-oxidation FMO 3 activity based on the Glu158Lys and Glu308Gly variants.

METHODS

Prior metabolic, protein binding and physicochemical data for benzydamine were abtained from the literature and incorporated into a minimal PBPK model with a $1^{\text {st }}$ order absorption model using Simcyp Population-based Simulator V14 Release 1.

Static Prediction of Benzydamine in vivo clearance

 - Inter-individual variability was incorporated into the static IVIVE for FMO3 in a similar way as described for CYP metabolism ${ }^{[5]}$ using individual values for FMO hepatic abundance (weighted mean 71 pmol $\mathrm{FMO3}$ per mg HLM, CV 60%,$=11)^{[0,7]}$ and assuming an Inter-System Extrapolation Factor (ISEF) of 1. Variability in benzydamine CYP2D6 metabolism was incorporated using the mote loss of CYP2D6 activity for a poor metaboliser (PM) at a frequency of 8.2\% of the population.

PBPK model for Benzydamine

Vss was predicted using the method reported by Rodgers, T. and Rowland, M $\left.{ }^{2006}\right)^{[8]}$ and a Kp Scaler of 0.2 was needed to accurately recover the in vivo $\mathrm{C}_{\text {max }}$ - Benzydamine N-oxidation $\mathrm{CL}_{\text {int }}$ (($/ / \mathrm{min} / \mathrm{pmol}$) ratio for the Glu158Lys and
Glu308Gly variants was calculated from an in vitro study using an E Coli Glu308Gly variants was calculated from an in vitro study using an E. Coli variants : Glu158Lys variant only : wild-type, respectively[${ }^{[3]}$. This ratio was incorporated into the PBPK model, assuming the same activity ratio in vivo and no impact of additional variants.

- The model assumed that all FMO metabolism was by liver FMO3.

RESULTS
Static Prediction of Benzydamine in vivo clearance

- Predicted benzydamine $C L_{I V}$ was comparable to observed (14% error) using in vitro $\mathrm{CL}_{\text {inf }}$ from a HLM pool of 200 donors ${ }^{[11]}$ (Fig. 2A). The $\mathrm{CL}_{1 v}$ was over-predicted by 4.5- ${ }^{[10]}$ and 2 -fold ${ }^{[1]]}$ for the other two HLM studies ($\mathrm{n}=355^{[10]}$ and unknown ${ }^{[1]}$).
- Predicted $\mathrm{CL}_{P O}$ was $11-{ }^{[10]}, 3-{ }^{[1]}$ and 1.5 -fold ${ }^{[11]}$ higher than observed using the 3 sets of in vitro HLM data (Fig. 2A)
- Predicted benzydamine $C L_{\text {IV }}$ and $C L_{\text {po }}$ was comparable to observed ($<25 \%$ error) using in vitro $\mathrm{CL}_{\text {int }}$ from a commercial baculovirus rhFMO3 system (Fig. 2B) ${ }^{[12]}$.
- Predicted $\mathrm{CL}_{\text {ve }}$ was $7-{ }^{[3]}$ and 2 -fold ${ }^{[13]}$ higher and $\mathrm{CL}_{\text {PO }}$ was 33 - ${ }^{[3]}$ and 4 -fold ${ }^{[13]}$ higher than observed (Fig. 2B) using in vitro $\mathrm{CL}_{\text {int }}$ from 2 other rhFMO studies. These rhFMO3 systems were not commercially available and were E. Coli[i] and baculovirus ${ }^{[13]}$ systems.
- ISEF values were estimated as $1.68\left[^{[12]}, 0.022^{[3]}\right.$ and $0.20^{[13]}$ for the 3 rhFMO3 studies. These values could be used to improve the prediction accuracy of other FMO3 substrates using rhFMO3 in vitro data and the corresponding in vitro assay.

PBPK model for Benzydamine

$\mathrm{CL}_{\text {int }}$ data from the study by Taniguchi-Takizawa et al., $2015{ }^{[11]}$ were selected for use in the PBPK model (unbound HLM CL int values of 9.94 and $6.93 \mu / / \mathrm{min} / \mathrm{mg}$ for FMO and CYP, respectively) as this study:
Used a pool of HLM from a large number of donors ($\mathrm{n}=200$) that should be representative of a general population;

- Obtained $\mathrm{CL}_{\text {int }}$ values that gave a good prediction of in vivo clearance;
- Generated both FMO and CYP $\mathrm{CL}_{\text {int }}$ in the same laboratory.

	iv dose		PO DOSE	
	${ }_{\substack{\text { max } \\ \text { mat }}}^{\text {a }}$	$\underset{\text { (mglLin) }}{\text { AUC }}$	$\underset{(m g L)}{\mathrm{c}_{\text {max }}}$	
Mean	0.070	0.49	0.43	3.88
Trial 1	0.071	0.43	0.43	${ }^{3.31}$
Trial 2	0.064	0.55	0.37	3.76
Trial 3	0.071	0.48	0.47	4.13
Trial 4	0.074	0.52	0.43	4.01
Trial 5	0.067	0.49	0.40	3.67
Trial 6	0.070	0.48	0.44	3.90
Trial 7	0.070	0.49	0.42	3.95
Trial 8	0.073	0.53	0.50	4.50
Trial ${ }_{\text {T }}$	${ }_{0}^{0.0073}$	${ }^{0.45}$	${ }_{0}^{0.47}$	4.49 3.06
Observed	0.068	0.54	0.50	4.95

[^0]A 40\% reduction in in vitro $\mathrm{CL}_{\text {int }}$ for the linked E158K-E308G variants in comparison to wild-type FMO3 corresponded to a 31% and 169% increase in mean simulated AUC of benzydamine for CYP2D6 EM and PM, respectively (Fig. 4).

 impact of the Glu 158 L Ls and GIu 308 Gly FMO3 variants for CYP2D6 extensive metabolisers (EM). Data points
are the geometric mean. Emror bars are 95% contidence intervals. B. Mean simulated plasma concentrations are the geometric mean. Error bars are e 5% contidence intervals. B. Mean simulated plasma concentratio
after a single PO dose of 50 mg . All lines are mean of 10 trials of 10 simulated individuals (total $\mathrm{n}=100$).

CONCLUSION

Selection of a recently published source for in vitro $\mathrm{CL}_{\text {int }}$ has allowed the development of a 'bottom-up' PBPK model to predict the pharmacokinetics of Benzydamine, a probe substrate for FMO3

- There is a tendency for over-prediction of in vivo benzydamine CL using in vitro HLM and rhFMO3 although in some cases a good prediction was seen The model can potentially be used in the future to research:

In vivo FMO 3 metabolism using in vitro data for other substrates of FMO3 (assuming the same ISEF values and/or variant : wild-type $\mathrm{CL}_{\text {int }}$ ratio)
In vivo DDI inv
There is a need for:
Further assay development of incubation conditions for FMO3 to understand the inter-study differences seen.
More data on the impact of additional allelic variants for FMO 3 on drug metabolism in vitro and in vivo.
More data for absolute FMO3 abundance in HLM (only available for 11 donors so far).

REFERENCES

[^0]: Table 1 . Simulated $\mathrm{C}_{\text {max }}$ and AUC in comparison to observed. Observed
 datala: $n=6$ (IV) and 12 (PO). Simulated da datatil: $n=6(\mathrm{IV})$ and $12(\mathrm{PO})$. Simulated dat
 are mean from 10 trials of 10 simulated individuals (total $\mathrm{n}=100$).

 Mean AUC and $\mathrm{C}_{\text {max }}$ were within 10% and 25% of observed for th V and PO studies, respectively (Table 1).

