Micafungin (mycamine®) is a semi-synthetic antifungal drug belonging to the novel echinocandin class. As its absorption is very poor, micafungin is only available as an intravenous (iv) formulation.

BACKGROUND

Micafungin is not extensively metabolised and renal clearance does not constitute a major pathway (Figure 2). Hepatobiliary clearance seems to be the main route of elimination for this compound — indicating a key role of transporters in its disposition — with hepatic uptake occurring primarily via NTCP and to a lesser extent via OATP(s) and biliary excretion occurring primarily via BSEP.

OBJECTIVE

To develop a preliminary physiologically-based pharmacokinetic (PBPK) model, to be used in the prediction of micafungin disposition in different populations.

METHODS

Physicochemical information and in vitro/in vivo data on the clearance of micafungin were used in a full PBPK model, implemented in the Simcyp Population-based Simulator (V132), as follows:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Model I Top-down</th>
<th>Model II Retrograde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>Vm prediction - Method 2: Rodgers & Roland, using:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- hepatic uptake scalar of 1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vm prediction - Method 2: Rodgers & Roland, using:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- hepatic uptake scalar of 1.6</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>CLh (in vivo)</td>
<td>CLh (in vivo)</td>
</tr>
<tr>
<td>Clearance</td>
<td>CLr (in vivo)</td>
<td>CLr (in vivo)</td>
</tr>
</tbody>
</table>

Concentration-time profiles of micafungin were simulated in healthy volunteers (HVs) following 100 mg single-dose (SD) iv administration to assess pharmacokinetic parameters compared to observed data.

As additional validation of the model, concentration-time profiles were simulated in:

- Simcyp Japanese population at doses of 50, 75, and 150 mg - pharmacokinetic profile was compared to observed data.

- Simcyp renal-impaired population (GFR < 30 mL/min) at a dose of 100 mg - pharmacokinetic profile was compared to observed data.

RESULTS

PBPK Model I Simcyp-Healthy Volunteer

The simulated concentration-time profile of micafungin (100 mg – iv) indicated no effect of renal impairment on micafungin PK parameters, which is consistent with findings that CL(Renal) is a minor elimination pathway.

PBPK Model II Retrograde Clearance Breakdown

To further develop this PBPK model, in vivo clearance was divided into the separate pathways involved in micafungin clearance:

REFERENCES

Simulations were carried out in 250 male-only subjects (10 trials x 25 subjects). Age-range: 20-31 years. Average weight: 66 kg. Red circles represent the observed mean values from the respective clinical study of micafungin.