THE RELATIONSHIP BETWEEN mRNA AND ACTIVITY FOLLOWING INDUCTION OF CYP3A4 AND CYP2B6 ACROSS A RANGE OF PROTOTYPEICAL INDUCERS

Lisa M Almond1, Suzanne Tay2, Susan Wong2, Sophie Mukadam2, Iain Gardner4, Karen Rowland-Yeo1, and Jane R Kenny2

(1) Simcyp Limited (a Certara company), Sheffield, UK; (2) DMPK, Genentech Inc., South San Francisco, CA, USA
lisa.almond@certara.com

Introduction

- CYP induction can be quantified using a variety of markers including an increase in mRNA expression, an increase in protein expression or an increase in enzyme activity.
- The use of mRNA data (Ind_{max} and Ind_{C50}) to predict the magnitude of interaction using mechanistic models is recommended as a sensitive marker that is not impaired when a drug exhibits mechanism-based inhibition and induction of the same enzyme simultaneously [1, 2].
- However, any difference between induction efficacy and potency derived from mRNA vs. activity data can impact the predicted magnitude of interaction.

Aims

- The aim of this study was to investigate the relationship between mRNA and activity for both 3A4 and 2B6 within the same hepatocyte donor and experiment.

Methods

- The change in CYP3A4 and CYP2B6 mRNA expression and enzyme activity were assessed in parallel in cryopreserved human hepatocytes from 4 donors.
- Hepatocytes were incubated for 48 hours with varying concentrations of 6 inducers (rifampicin, carbamazepine, phenobarbital, phenytoin, efavirenz and nifedipine) prior to in situ assessment of activity (formation of 6β-hydroxytestosterone and hydroxybupropion) and mRNA levels (QuantiGene Plex 2.0 Affymetrix Assay Kit) in the same well as previously described [3].
- Cell toxicity and viability were monitored using LDH leakage and AlamarBlue® assays.
- Data for mRNA and activity were plotted as fold increase over vehicle control vs. the concentration of the inducer and curve fitting carried out to derive the mean Ind_{max} (maximum fold induction, E_{max} + 1) and Ind_{C50} (the concentration that yields half of the maximum fold induction).

Results

- For CYP3A4 induction, mRNA data yielded higher efficacy (mean 1.7-fold higher Ind_{max}) and lower potency (mean 2.2-fold higher Ind_{C50}; Figure 1a).
- For CYP2B6 induction, mRNA data yielded lower efficacy (mean 0.5-fold) and lower potency (higher Ind_{C50}, mean 3.7-fold; Figure 1b).

Conclusions

- These data indicate that the predicted magnitude of interaction using Ind_{max} and Ind_{C50} generated from mRNA or activity data would be similar for CYP3A4 but not for CYP2B6.
- Although a caveat of this work is that a specific CAR activator was not included, it suggests that the relationship between mRNA and activity should be evaluated for each enzyme prior to use in DDI predictions using mechanistic static or dynamic models.
- Future investigation of these relationships across different laboratories would be beneficial to add to our understanding of how best to extrapolate in vitro CYP2B6 induction data to in vivo.

References

2. Fahmi et al., 2010 Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab Dispos. Sep;38(9):1605-1,