MODEL-BASED META-ANALYSIS OF THE HbA1c LOWERING EFFECT OF PF-04971729, A SODIUM GLUCOSE CO-TRANSPORTER-2 INHIBITOR (SGLT2i), IN COMPARISON TO OTHER SGLT2i AND ANTI-DIABETIC AGENTS (ADA)

Jaap Mandema¹, Kevin Sweeney², Steven Terra², Vaishi Sahasrabudhe³
¹ Quantitative Solutions, Inc., Menlo Park, CA; ² Pfizer Inc, Groton, CT

ABSTRACT
PF-04971729 is a patient-selected SGLT2i in development for treatment of type 2 diabetes mellitus (T2DM). Since there is growing recognition of the need for comparative effectiveness of various ADA, a model was developed to quantify time course of mean change in HbA1c (% of placebo) relative to ADA including SGLT2i, DPP4i, SU, TZD and GLP1. The model was built using a population PK-PD model and systematic review and meta-analysis (SRA) of 164 randomized controlled trials (RCT) in >67000 T2DM patients and 21 ADA. The study aimed to perform a meta-analysis of SGLT2i at 12 weeks at baseline HbA1c of 8%. The emergence of new drugs for the treatment of T2DM over the last decade has resulted in a need to demonstrate differentiation in efficacy and/or safety (and potentially other beneficial aspects) (Figure 1).

The analysis provided insights into the relative efficacy across the various mechanisms of action and among the 21 anti-diabetic agents, and quantified:
- Impact of background treatment
- Specific background treatments impacted specific randomized treatments (SU, TZD or Insulin background significantly diminished DPP4i response)
- Any background treatment significantly diminished GLP1 response, with a greater decrease on TZD background therapy when compared to SU or Insulin background
- Insulin background treatment significantly diminished SGLT2i response
- There was no significant impact of background treatment on SU, TZD or metformin response

The analysis offers a quantitative framework to leverage external data and thus enables an indirect comparison of ADA with existing treatments.

RESULTS
- The model estimated a significant difference in rate of onset for the various classes (Figure 1)
- SGLT2i had the fastest onset time for HbA1c lowering (ET50 = 3 weeks) followed by DPP4i, metformin, SU, GLP1 (ET50 = 7.2-8.7 weeks), and TZD (ET50 = 9.6 weeks) (Figure 2)
- Relatively fast onset for SGLT2i could be explained by their immediate effect on renal glucose excretion (Figure 1)

CONCLUSIONS
- A model-based meta-analysis was used to quantify the time course of HbA1c response of PF-04971729 relative to other anti-diabetic agents including SGLT2i, DPP4i, SU, TZD, and metformin
- The analysis provided insights into the relative efficacy across the various mechanisms of action and among the 21 anti-diabetic agents, and quantified:
 - Impact of time of dose and loss of drug effect
 - Impact of baseline HbA1c
 - Impact of background treatment
- The analysis offers a quantitative framework to leverage external data and thus enables an indirect comparison of novel anti-diabetic agents with existing treatments

ACKNOWLEDGMENTS
This research was supported by Pfizer, Inc. The authors would like to thank members of the CUIMED Research Unit, especially Neel Aiken, Jonathan Atts and Xi Wang for designing the 12-week study of PF-04971729 in T2DM patients, and providing the results and input for the meta-analysis.