


The

Theoretical Assessment of Metabolic Drug Interactions in Paediatric Population: The Impact of Age Related Fractional Metabolism (fm) and Its Disparity between Adults and Neonates University

Sheffield. Salem F¹, Barter ZE^{1,2}, Johnson TN^{2,3}, Rostami-Hodjegan A^{1,2} 1-Academic Unit of Clinical Pharmacology, University of Sheffield, 2- Simcyp Limited, 3- Pharmacy Department, Children's Hospital; Sheffield, UK

Introduction

- Carrying out drug-drug interaction (DDI) studies in young children is fraught with ethical problems. The impracticality of such studies has led to a paucity of data and inability to extend observations from adults to paediatrics with adequate confidence.
- Modelling and simulation (M&S), combined with in vitro in vivo extrapolation (IVIVE) of information on ontogeny of various elimination routes (e.g. Fig. 1), can be used as a tool in understanding the potential for metabolic DDI in young children.
- The knowledge gained from M&S exercises may guide and justify the monitoring of pharmacotherapy for certain drug combinations in young children with the ultimate aim of providing definitive answers for the presence or absence of hypothetical mDDI.

Fig. 1. Human hepatic enzyme abundance expressed as a percentage of the adult value¹

Objective

To investigate theoretically conceivable differences in relative importance of metabolic routes between paediatric and adult individuals and its consequences for susceptibility to metabolic DDI.

Methods

The relative amount of each drug metabolising enzyme in whole liver was calculated and compared to adults as follows:

Age specific relative amount of total enzymes compared to adult =

 $= Ontogeny Function \times Enzyme Abundance_{(Adults)} \times MPPGL \times Liver Weight$ $MPPGL_{(Adult)} \times Liver Weight_{(Adult)} \times Enzyme Abundance_{(Adults)}$

Where "Ontogeny Function" describes the enzyme abundance with age as a fraction of the adult value², MPPGL is microsomal protein per gram of liver calculated at each age³, and liver weight is calculated with the knowledge of body surface area and tissue density². Similarly, a relative renal function¹ was calculated at each age:

Relative Renal Function = $\frac{Pediatric GFR at Given Age}{Adult GFR Value}$

Where adult GFR value was assumed to be 120 ml/min^2 .

Methods (continued)

Ratios for enzyme abundance and renal function were used to assess proportionality of ontogeny with age:

Where $Route_{i,t}$ and $Route_{i,t}$ are pathways "i" and "j" at the age of "t".

In order to evaluate the potential impact of DDI, we created two virtual compounds each being cleared only via two metabolic routes with the following characteristics:

			-	
Compound 1	V _{max}	K _m		Comp
CYP 3A4	10	17		CYI
CYP 1A2	68	10		CYI

 V_{max} (pmol/min/pmol of enzyme) and K_m (μM) were used to calculate intrinsic clearance (CL_{int}) and scaled to hepatic clearance as reported previously⁴.

Two different approaches^{5,6} were followed to calculate the impact of DDI on these virtual compounds at different ages:

Method 1 (Mechanistic Static Model): Calculations were carried out with the assumption of selective and full inhibition of CYP3A4 at the given dose of inhibitor at all ages (3mg/kg). Increased exposure to substrate was calculated using the typical equation; area under the plasma concentration-time curve (AUC), in the presence and absence of an inhibitor: AUC

$$= \frac{IICC_{\text{(inhibited)}}}{AUC_{\text{(uninhibited)}}} = \frac{I}{\frac{fm}{1+\frac{[I]}{K}} + (1-fm)}$$

where fm is the fraction of substrate clearance mediated by the inhibited metabolic pathway, [I] is the concentration of inhibitor at the enzyme site and K_i is the inhibition constant for inhibitor obtained from in vitro studies (note the equation applies only to orally administered drugs undergoing hepatic metabolism and it ignores, amongst other factors, the possibility of inhibition of gut "first-pass" metabolism and time-variant inhibitor concentration). By assuming that [I] has been adequately high, the level of DDI could be approximated by the following equation:

 $R = \frac{AUC_{(inhibited)}}{AUC_{(uninhibited)}} \approx \frac{1}{2}$

With the knowledge of Cl_{int} in addition to metabolic and total blood clearance, fm was calculated.

Method 2 (Mechanistic Dynamic Model): Metabolic characteristics of the virtual compounds (K_m and V_{max}) were entered into Simcyp[®] Software Paediatric version 8.01 (Special Paediatric 2008 version TB3; www.simcyp.com). Both compounds were assumed to have similar permeability to that of alprazolam (i.e. low gut wall metabolism). The outcome of DDI with a strong inhibitor of CYP3A4 (Ketoconazole, $K_i=0.015\mu M$) was simulated for different age groups at a dose of 3mg/kgand the results were compared to the fold increase in AUC simulated in adults.

Fold Difference between Pathways = $\frac{Route_{i,t}/Route_{i,20y}}{Route_{j,t}/Route_{j,20y}}$

ound 2	V _{max}	K _m		
3A4	100	10.5		
2D6	50	21		

$$\frac{1}{1 - fm}$$

Maximal discrepancies in "Fold Difference between Pathways" determined using Eq. 3 with the ages at which these were observed (majority neonates) are shown in Table 1. The estimated level of DDI under inhibition of CYP3A4 from Methods 1 and 2 are summarised in Tables 2 and 3 and indicate variation in DDI susceptibility (higher: Compound 1; lower: Compound 2) in neonates compared to adults.

Table 1 – Maximum fold discrepancy in relative function of pathways compared to adults. Ages at which the maximal discrepancy was observed are provided and arrows indicate the direction of the relationship.

Ratio	CYP1A2	CYP2B6	CYP2E1	CYP2D6	CYP2C8	CYP2C9	CYP2C18/19	Renal
CYP3A4 vs	Day 1 108.9 个	Day 1 10.5 个	Day 1 4.6 🜵	Day 1 2.7 ↓	Day 1 16.4 ↓	Day 3 16.4 🔸	Day 1 9.9 ↓	Day 1 32.6 ↓
CYP1A2 vs		Day 1 10.3 ↓	Day 1 504.1 ↓	Day 1 289.7¥	Day 1 1784.2 √	Day 1 1786.4 🗸	Day 1 1072.8	Day 1 3550.8
CYP2B6 vs			Day 1 48.8 ↓	Day 1 28.0 ↓	Day 1 172.6 ↓	Day 1 172.8 ↓	Day 1 103.8 ↓	Day 1 343.5 ↓
CYP2E1 vs			· / , / ,	Day 1 2.2 ↓	Week 1 3.6 🜵	Day6 4.1 🔸	Day 1 2.1 ↓	Week 1 7.0 🜵
CYP2D6 vs					Day 1 6.2 🜵	Day 1 6.2 ↓	Day 1 3.7 🜵	Day 1 12.3 ↓
CYP2C8 vs				-	````	Day 4 1.2 🔸	Week3 3.0 ↑	Week 1 2.0 🔨
CYP2C9 vs							Week 2 3.3 🔨	Day 1 2.0 🔨
CYP2C18/19 vs								Week 1 3.7 🜵

Method 1	Compound 1			Compound 2			
Age	fm 3A4	fm 1A2	R _{AUC}	fm 3A4	fm 2D6	R _{AUC}	
Year 20	28	72	1.38	78	22	4.49	
Year 1	35	65	1.53	76	24	4.12	
Day 1	50	50	2.00	50	50	2.00	

Method 2	Compound 1			Compound 2			
Age	fm 3A4	fm 1A2	R _{AUC}	fm 3A4	fm 2D6	R _{AUC}	
Year 20	28	72	1.33	78	22	3.36	
Year 1	35	65	1.37	76	24	2.67	
Day 1	50	50	1.60	50	50	1.55	

We were able to indicate the possibility of variable susceptibility to metabolic DDI in paediatric individuals compared to adults (both higher and lower depending on the characteristics of the drug). Further investigation of the findings is warranted via referral to case notes and future monitoring of certain cases of polypharmacy.

© 2008 Simcyp Limited

Results

Table 2 –Estimated fm and DDI under inhibition of CYP3A4 as a function of age

Table 3 – Estimated fm and DDI under inhibition of CYP3A4 as a function of age

Conclusions

References

Alcorn J. And McNamara P.J., Ontogeny of Hepatic and Renal Systemic Clearance Pathways in Infants, Clin.

Johnson T.N, Rostami-Hodjegan A. and Tucker G.T., Prediction of the Clearance of Eleven Drugs and Associated Variability

Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of Human Microsomal Protein Per Gram of Liver with Age: Absence of Influence of Operator and Sample Storage May Justify Inter laboratory Data

Howgate EH, Rowland Yeo K, Proctor NJ, Tucker GT and Rostami-Hodjegan A Prediction of in vivo drug clearance from in

Rostami-Hodjegan A., Tucker GT., 'In silico' simulations to assess the 'in vitro' consequences of 'in vitro' metabolic drug-

Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37:1257-94.

Pharmacokinetic, 2002: 41: 959-998

in Neonates, Infants and Children, Clin. Pharmacokinetic, 2006: 45: 931-956

Pooling. Drug Metab Dispos. 2008 ;36:2405-2409.

vitro data 2006: Xenobiotica, 36:6, 473-497

drug interactions, Drug Discovery Today: Technologies, 2004: 1: 441-448