
Observations with temporal effects such as the  number of survivals within 
a time-frame arise in repeated count data,  number of signalling molecules 
in a cellular environment or annual disasters at a coal mining follow a 
Poisson process[1,2,3]. The objective of this study is to present the Bayesian 
estimation approach of parameters of Univariate Poisson change-point 
processes. For this, we defined a class of Prior distributions and used it to 
obtain the Joint Posterior distribution using Markov Chain Monte Carlo 
(MCMC) sampling methods as discussed by Maria Rizzo (2007)[2]. All 
analysis were performed in R 3.3.4.

Background

A change-point (CP) splits a sequence of data over time into segments. 
One of the assumptions is that a dataset from the same segment comes 
from the same population (model). Let 𝑌𝑖 be an independent and 
identically distributed (IID) random variable (RV), representing the number 
of observations at times, 𝑖 = 1, … , 𝑛. A simple form of a CP model can be 
described as shown in equation (1) below. 𝑘 is the unknown parameter 
called the CP. When 𝑘 = 𝑛 or 𝑘 = 1, the model is interpreted to have no 
change. 

Conclusion

We performed our analysis on 10 CP models with different parameter 
values.  We found despite the differences in the model parameters, GS 
algorithm still performed effectively and accurately. However, we noticed 
that when the change-point 𝑘 is close to the upper and lower bounds of 𝑛,
the algorithm struggled and sometimes failed. This can be explained by the 
“Random walk” effects which the algorithm is  built on. At each iteration, a 
sample is generated depending on the sample form the previous step. So, 
if the sample for 𝑘 is close to 𝑛, then the next estimate could fall on or 
beyond the maximum value of 𝑛 causing the iteration to terminate. The 
Bayesian CP detection of Univariate Poisson processes has be extended to 
estimate parameter of Bivariate Poisson CP models[4]. Also, there is 
evidence of other estimation methods such as the stochastic version of EM 
algorithm (SAEM)[5] used to estimate the parameters of posterior 
distribution of change-point problems. 

Bayesian inference 
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Results

After discarding 5,000 burn-in samples, the mean estimates were 

calculated. The estimates suggests  𝑌𝑖 follows a CP model with ෢𝜆1 = 1.096, 
෡λ2 =5.177 and ෠𝑘 = 64.909, which are very close to the observed mean 

values. This suggests provided the choice of prior is accurate, the algorithm 
will perform effectively and accurately. 
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Bayesian Inference is used to estimate the parameters of interest (𝑘, λ1
and λ2) of the current model for CP. It is assumed the Joint Posterior 
distribution (2) is proportional to the product of the known Prior 
distribution and the Likelihood function:

P (λ1,λ2,k | y) ∝ P(λ1,λ2,k) P(y | λ1,λ2,k) (2)

Here P(y | λ1,λ2,k) is the likelihood function of 𝑛 observations denoted by 
𝐿(𝑌𝑖) and

𝐿(𝑌𝑖) ∝ ς𝑖=1
𝑘 𝑒−𝜆1𝜆1

𝑦𝑖 ς𝑖=𝑘+1
𝑛 𝑒−𝜆2𝜆2

𝑦𝑖 (3)

= 𝑒−𝑘𝜆1𝜆1
σ𝑖=1
𝑘 𝑦𝑖𝑒−𝜆2(𝑛−𝑘)𝜆2

σ𝑖=𝑘+1
𝑛 𝑦𝑖

The following are the choice of prior distribution used:

𝜆1 ~ 𝐺𝑎𝑚𝑚𝑎 𝛼1, 𝛽1 ,
𝜆2 ~ 𝐺𝑎𝑚𝑚𝑎 𝛼2, 𝛽2 ,
𝑘 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1, … , 𝑛]
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Figure 1. 120 simulated samples from CP Poisson model.

Gibbs Sampler 

Gibbs sampler (GS) is a special case of Metropolis-Hastings sampler that is 
used to generate RVs from marginal distributions. With this technique we 
are able to obtain characteristics such as mean or variance of marginal 
densities indirectly without having to calculate the actual posterior density. 
This is done by carrying out large enough iterations till the estimates 
converge[3]. Therefore, to estimate 𝑘, λ1 and λ2, we ran 10,000 iterations of 
GS algorithm using the following conditional distributions[2].

where, 

𝐿 𝑦; 𝑘, 𝜆2 , 𝜆1 = 𝑒𝑘( 𝜆2 − 𝜆1)
𝜆1
𝜆2

σ𝑖=1
𝑘 𝑦𝑖 .

Table 1. Summary estimates of ෢𝝀𝟏, ෢𝝀𝟐 and ෡𝒌 after 5,000 burn-in GS iterations.
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Yi ∼ Poisson(λ1), i = 1,...,k

Yi ∼ Poisson(λ2), i = k + 1,...,n

(1)

Parameter Mean SD 2.5% 97.5% Min Max

෡λ1 1.096 0.128 1.007 1.178 0.705 1.649

෡λ2 5.177 0.305 4.971 5.373 4.133 6.420

෠𝑘 64.909 0.325 65.000 65.000 60.000 66.000

For 𝑌𝑖 we generated 120 random samples (Figure 1) from a system of two 
Poisson processes with λ1 = 1 and λ2 = 5. 𝑘 was sampled randomly from a 
uniform distribution (𝑘 = 65). To estimate 𝑘, we could simply assume it lies 
between two time points i.e. 𝑘 lies between 𝑥𝑡−1 and 𝑥𝑡. However, this 
method is not as efficient as using CP detection models which are better 
able at isolating 𝑘 and able to estimate λ1 and λ2. 

Methods

𝑓 𝜆1 𝑦, 𝜆2,, 𝑘) ~ 𝐺𝑎𝑚𝑚𝑎 𝛼1 + ෍

𝑖=1

𝑘

𝑦𝑖 , 𝑘 + 𝛽1 ,

𝑓 𝜆2 𝑦, 𝜆1,, 𝑘) ~ 𝐺𝑎𝑚𝑚𝑎 𝛼2 + ෍

𝑖=𝑘+1

𝑛

𝑦𝑖 , 𝑛 − 𝑘 + 𝛽2 ,

𝑓 𝑘 𝑦, 𝜆1, 𝜆2) = 𝐿(𝑦; 𝑘, 𝜆2 , 𝜆1)

σ𝑗=1
𝑛 𝐿(𝑦; 𝑗, 𝜆2 , 𝜆1)

,
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