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ABSTRACT
Background: Due to an increase in interindividual variability in response compared to the metabolism/PK of 
drugs it is expected that most studies of the impact of genetic polymorphism in drug metabolism will be more 
successful in assessing PK rather than PD outcome (e.g. dextromethorphan (DEX)) (figure 1). However, some 
studies have linked PD to enzyme phenotype/genotype but fail to establish a relationship between 
phenotype/genotype and PK (e.g. warfarin). A simulation approach may help to clarify the reasons for these 
contrasting outcomes.

Methods: Simcyp® algorithms (www.simcyp.com) were used to simulate virtual populations with respect to: (1)
the PK of DEX and its antitussive response in CYP2D6 phenotypes, and (2) the relationship between CYP2C9 
genotype and the PK and PD of S-warfarin. To mimic the design of studies reported in the literature, the 
populations in case (1) were enriched with the poor metaboliser phenotype, and, in case (2), subjects 
unselected for CYP2C9 genotype were studied.

Results*: While 5 subjects of each phenotype were required to achieve 80% power to discriminate the PK of 
DEX between extensive and poor metabolisers (EMs and PMs respectively), the corresponding number to 
detect the difference in antitussive effects >1000. With a study size of 550, the power to detect a difference in 
warfarin clearance between CYP2C9 wild type (*1/*1) and some of the less frequent genotypes was higher 
than that for the more frequent genotypes (e.g. 90% power for *2/*3 vs 45% power for *1/*2). This is because of 
the combined effects of relative enzyme activity (*2/*3 = 40%; *1/*2 = 85% of wild type activity) and genotype 
frequency (*2/*3 = 1.4%; *1/*2 = 20.4% in Caucasians). 

Conclusions: The simulations explain the failure of reported studies with regard to defining relationships 
between genetic polymorphism of drug metabolising enzymes and PK and PD. Integration of prior information 
on enzyme kinetics is helpful in optimising study design and in avoiding costly and unsuccessful clinical 
studies.

* Please note that results have been updated since submission of abstract and numbers in results section 
(lines 1, 3, 5 and 6).
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AIMSAIMS

A physiologically-based model Simcyp®, which incorporates in vitro metabolic 
values and variability in genetic, physiological and demographic features was 
adapted to generate DEX and WARF AUC (Area Under Concentration Curve) 
and AUEC (Area Under Effect Curve) values for each individual (Figure 2) in 
populations of various sizes using relevant in vitro and in vivo parameters. 

METHODSMETHODS
DEX:
The effect of study size on power to detect a difference in the PK and PD of DEX due to the CYP2D6 phenotype 
is shown in Figure 3a. Around 5 EMs and 5 PMs are required to differentiate the PK between phenotypes while 
the power to differentiate a difference in response does not reach an acceptable level even at n = 1000.
Figure 3b shows that altering the potency of DOR, increasing the contribution of CYP2D6 to the overall 
metabolism of DEX and decreasing the PD variability all increase the power for detecting differences in 
response.

Figure 2: Schematic representation of the PBPK model which was used to 
assess propagation of phenotypic variation in CYP2D6 CLint and genetic variation 
in CYP2C9 activity/genotype frequency into DEX and WARF 
concentration/response profiles over time in each phenotype/genotype.

• To incorporate information on the genetics of drug metabolism into PBPK models which integrate in vitro 
enzyme kinetic data on dextromethorphan (DEX) and warfarin (WARF) to generate in vivo concentration-time 
profiles for the relevant drug/metabolites (IVIVE).
• To use these IVIVE models as part of clinical trial simulations (CTS) to explore the power of studies which 
investigate the impact of CYP phenotype/genotype on the PK/PD of DEX and WARF.
• To explain experimental observations reported in the literature using these simulations. g.dickinson@sheffield.ac.uk

RESULTSRESULTS
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Figure 1: Population variability in drug 
response is often greater than variation in 
plasma drug concentrations because of the 
additivity of  interindividual variability in PK 
and PD elements that determine the overall 
dose - response relationship.

DISCUSSIONDISCUSSION

WARF:
Figure 4A shows the effect of study size on the ability to differentiate PK and PD response between CYP2C9
genotypes (subjects are chosen randomly from a Caucasian population). Specific comparisons between wild 
type (*1*1) and two other genotypes are  shown.
Figure 4B shows the effect of study size if subjects are chosen specifically for their genotype (comparing *1*1 
with *3*3) as they are in the DEX study.

Both sets of results are consistent with what we see in the literature: Two studies into the effect of the CYP2D6 
polymorphism on DEX PK and response used study sizes of 6 and 221,2. Both were able to observe a difference 
in PK (85 and 100% power respectively) but neither saw a difference in PD between the two phenotypes (both 
studies had roughly 5% power).

Studies of the effect of CYP2C9 genotype on warfarin PK are generally unsuccessful3-5. They use study sizes of 
47 to 120 subjects and have powers of 45 to 90% respectively. Power is even less for distinguishing PK between 
particular sets of genotypes. PD studies however use 120 to 550 people and have better power (50 to 90%)6-9. 
Enriched populations would solve the problem of underpowered warfarin studies.

The approach used in the studies reported here can help to identify unsuccessful studies a priori where the 
effect of phenotype/genotype on PK or PD is likely to be small and clinically insignificant.

Figure 3: The power (% studies 
showing a significant difference in 
response between different 
phenotypes) vs. number of 
subjects in each study arm (N).
A: PK and PD studies are shown.
B: Shows the influence of various 
parameters on the ability to detect 
differences in PD.
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Figure 4: The power (% studies 
showing a significant difference in 
response between different 
phenotypes) vs. number of subjects in 
each study arm (N). 
A: PK, PD & Specific comparisons of 
PK between certain genotypes are 
shown.
B: Comparing *1*1 with *3*3 only in 
equal numbers.
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Example input 
parameters:

Dose, V(DEX), 
V(DOR)/F(DOR), fu, 
CLr, ka, k(DOR), tlag, 

k21, k12

Example input 
parameters:

V(WARF), fu, ka, CLr, 
tlag

Example input 
parameters:

Imax, IC50, ke0, n, 
Pot(DOR), placebo 
parameters, Base 

Cough

Example input 
parameters:
Cu50, n, kd

References and definitions available on request.

Activity of DOR 
assumed to be 
~ 40% that of 

DEX

Contribution of 
CYP2D6 to 

overall 
metabolism of 
DEX ~ 75%
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