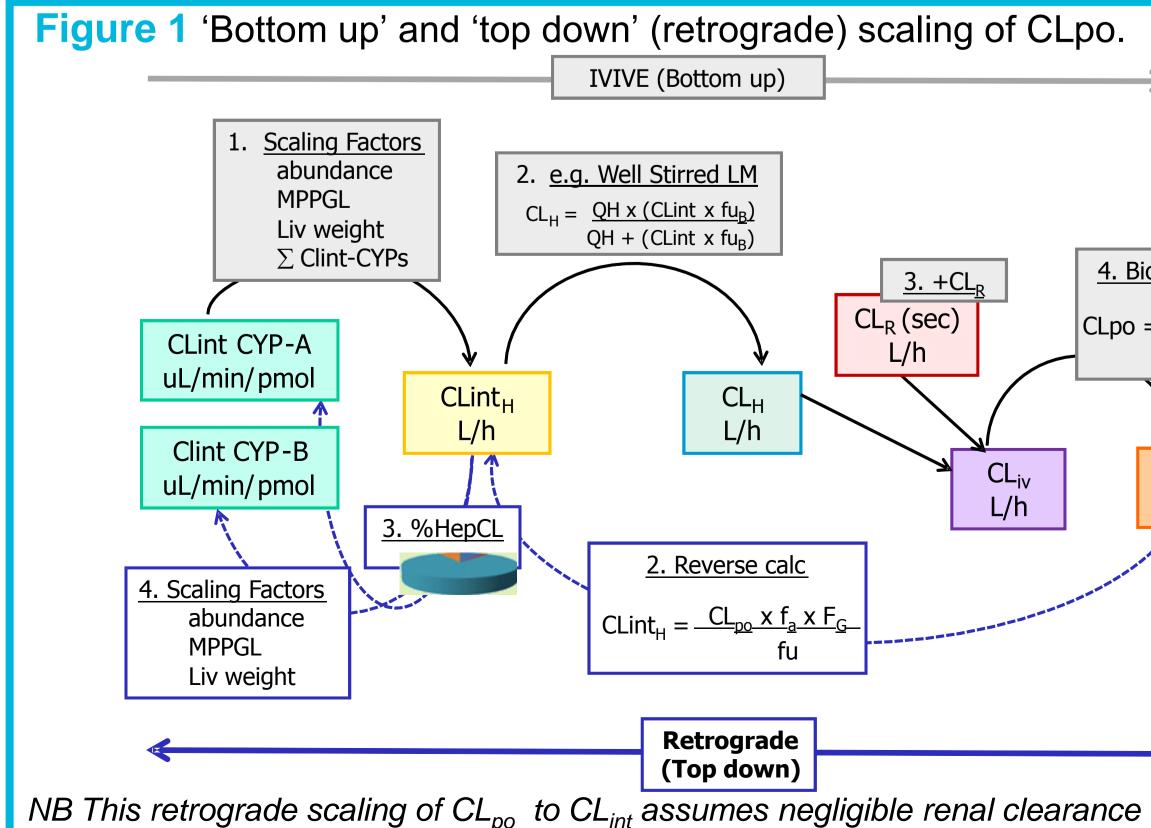
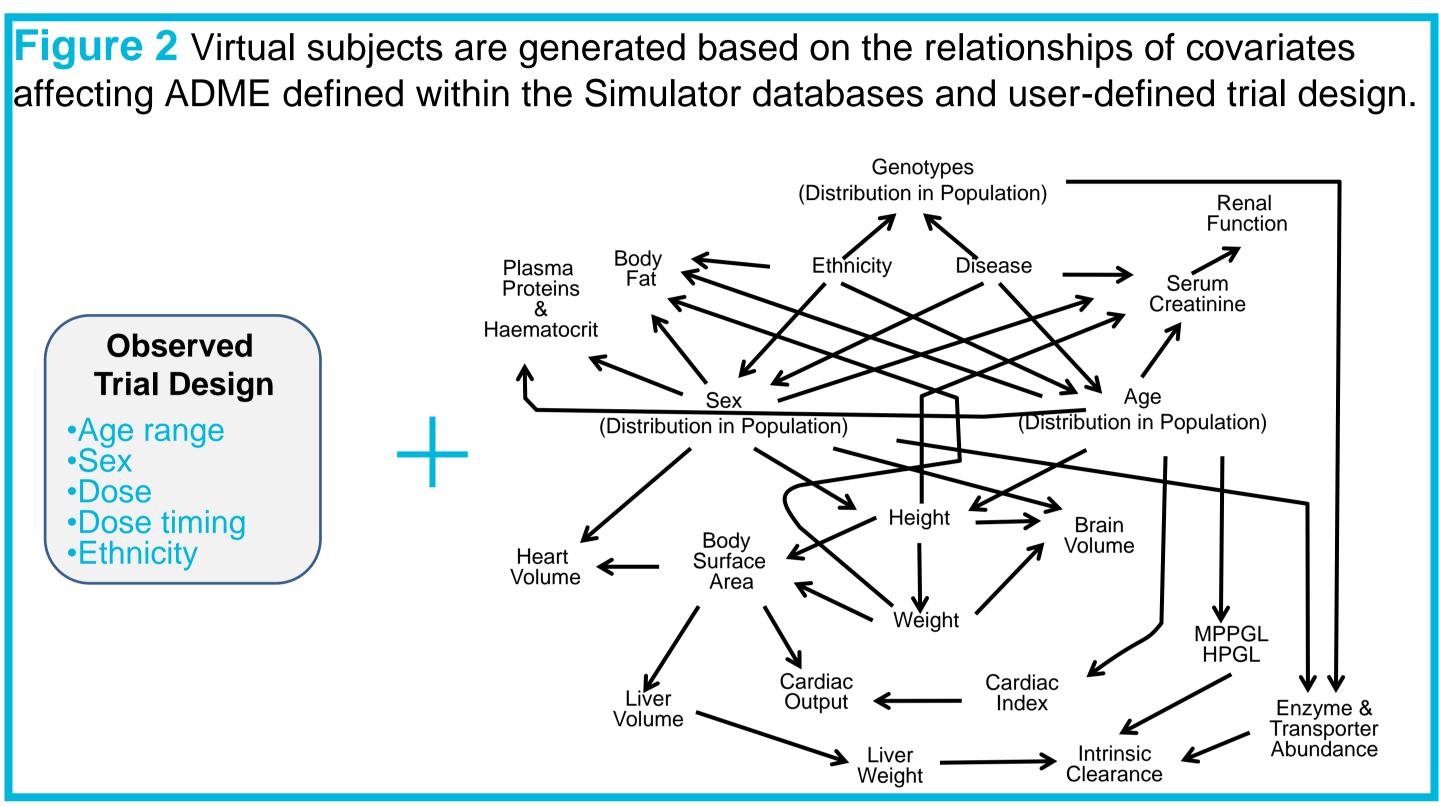
SIMULATION OF VIRTUAL HUMAN SUBJECTS TO INVESTIGATE THE IMPACT OF CYP R6387 **OMEPRAZOLE EXPOSURE** Lisa M. Almond¹, Khaled Abduljalil¹, Karen Rowland-Yeo¹ and Amin Rostami-Hodjeg ¹Simcyp Limited, Sheffield, UK, ²School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK. Correspondence to I.a.

BACKGROUND


There are an increasing number of clinical reports describing the importance of the *17 allelic variant of CYP2C19. This polymorphism has been associated with a 2-fold increase in transcriptional activation leading to an ultrarapid metabolizer (UM) phenotype and decreased in exposure of CYP2C19 substrates, such as omeprazole¹.

IPURPOSE

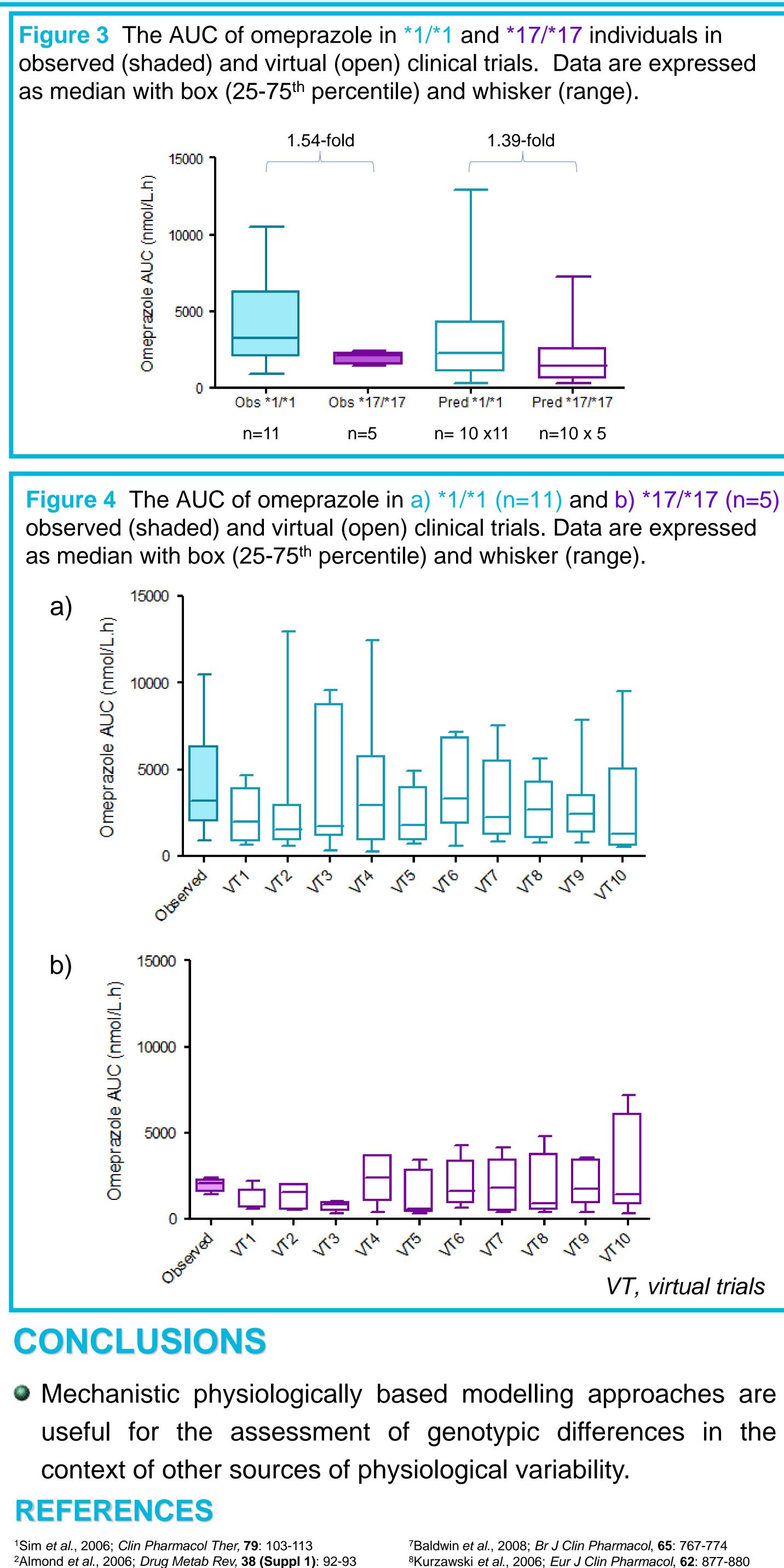
We previously developed an approach to investigate the impact of CYP2C9 polymorphisms within a population^{2,3}, which was also adopted by other investigators⁴. The objective of this study was to extend this approach using prior *in vitro* and *in vivo* information the on metabolism and kinetics of omeprazole in order to evaluate the likely impact of the *17/*17 genotype on the pharmacokinetics (AUC) of omeprazole in a virtual population.


METHODS

- A meta-analysis was carried out to determine the frequency of CYP2C19*17/*17 within an unselected European Caucasian population.
- In the absence of genotypic-specific abundance data, the CYP2C19 abundance for extensive metabolisers was increased 2-fold for *17/*17 (28 pmol/mg microsomal protein) to reflect the increased transcriptional activation. Equivalent variability (106%) was assumed.
- The intrinsic clearance (CL_{int}) for omeprazole was extrapolated from *in vivo*⁵ (Figure 1) and apportioned to CYP2C19 (87%) and CYP3A4 (13%), based on the reported fractional contribution of the enzymes to hepatic clearance⁶. The resulting CL_{int} for CYP2C19 and CYP3A4 $(21.3 \text{ and } 0.33 \mu \text{L/min/pmol rCYP})$ were then used in all simulations.
- Multiple virtual trials (VTs) matched to the clinical trial (number of subjects, ethnicity, sex, age range, dosing regimen) were simulated using the Simcyp Population-based Simulator (Version 10.0).

4. Bioavailability $CLpo = \frac{CLiv}{fa \times F_G \times F_H}$ CL_{po}

- Each virtual subject was assigned physiological characteristics based on covariation built into the Simulator algorithms (Figure 2).
- Predicted AUCs and fold difference in virtual individuals with the genotype *17/*17 vs. *1/*1 were compared to corresponding in vivo data reported by Baldwin et al., 20087, which were extracted using GetData Graph Digitizer.


RESULTS

- The weighted mean frequency for *17/*17 was 6.0% in the North European Caucasian population (5 independent studies, 2493 subjects; Table 1) $^{1,8-11}$.
- The predicted AUCs (median 2121 and 1524 nmol.h/L) were in good agreement with the observed data for both *1/*1 (3226 nmol.h/L) and *17/*17 (2097 nmol.h/L) genotypes, respectively (Figure 3).
- The predicted fold decrease in AUC (*17/*17 vs. *1/*1) also compared well with the observed data (ratio of overall medians 1.39 vs. observed 1.54; Figure 3).
- The variability in *1/*1 individuals across 10 VTs (Figure 4a) was in reasonable agreement with that observed, however, the variability in *17/*17 individuals was over predicted compared to observed (Figure 4b). This could be an indication that the low subject number in the clinical trial (n=5) caused underestimation of the 'true' variation in a *17/*17 population or indicate that the assumed CV of 106% for the *17/*17 abundance requires refinement.

Table 1 Meta-analysis for the frequency of (Caucasian population.

	CYP2C19*17/*17				
	Nationality	Total n	*17/*17 n	% *17/*17	
Sim <i>et al</i> ., 2006	Swedish	107	4	3.74	
Kurzawski <i>et al</i> ., 2006	Polish	125	8	6.40	
Rudberg <i>et al</i> ., 2008	Norwegian	166	7	4.22	
Justenhoven <i>et al</i> ., 2009	German	1989	119	5.98	
Grabar <i>et al</i> ., 2008	Slovenian	106	12	11.3	
Weighted Mean %				6.02	

CYP2C19*17/*17 in the

2C19*17/*17 (DN MANCI	HESTER 1824
	ersity lester	
jan ^{1,2}	e Univ Manch	
Imond@simcyp.com	ЧЧ	

³Almond *et al.*, 2006; *Clin Pharmacol Ther*, **38 (Suppl 2)**: 209-210

⁵Andersson et al., 1990; Eur J Clin Pharmacol, **39**: 195-197 ⁶Obach et al., 2006; *J Pharmacol Exp Ther*, **316**: 336-348

⁴Kasuma *et al.*, 2009; *Pharm Res*, **26**: 822-835

⁸Kurzawski *et al.*, 2006; *Eur J Clin Pharmacol*, **62**: 877-880 ⁹Rudberg et al., 2008; Clin Pharmacol Ther, 83: 322-327 ¹⁰Justenhoven et al., 2009; Breast Cancer Res Treat **115**:391-396 ¹¹Grabar *et al.*, 2008; *Eur J Clin Pharmacol*, **64**: 871-876