Repolarisation Rate: an integrative biomarker of cardiac action potential repolarisation

Ben G Small^{1,*}, David Hollinshead¹, Masoud Jamei¹, Sebastian Polak^{1,2}

Introduction

Background

The pro-arrythmic potential of new chemical entities (NCE's) continues to be an issue in drug development [1].

Objectives

The aim was a preliminary evaluation of the utility of a novel biomarker (**ReRa**) summarising and discriminating the slope (Δ mV / Δ ms) between indices of phase II (APD₅₀) and phase III (APD₉₀) cardiac action potential repolarisation (Fig 1).

Fig 1. Schematic illustrating the measurement of repolarisation rate (ReRa) from a simulated cardiac action potential (cAP).

Input parameters included *in vitro* measurements of the IC $_{50}$ (μ M) and n $_{\rm H}$ of 6 compounds (Table 1) at hERG (I $_{Kr}$), Nav1.5 (I $_{Na}$), Cav1.2/b2/a2-d (I $_{Ca}$), I $_{Ks}$ and I $_{to}$ and the effective therapeutic plasma concentration (ETPC; μ M) of these same compounds [3]. Ion channel assemblies were assumed to recapitulate the properties of the physiological current. Extraction of the membrane potentials (mV) at which 50 ($V_{m,50}$) and 90 ($V_{m,90}$) % repolarisation occurred and the corresponding APD $_{x}$ values allowed calculation of the slope between APD $_{50}$ and APD $_{90}$ and hence repolarisation rate (ReRa; Equation 1).

Table 1. Pharmacokinetic and pharmacodynamic ion channel parameters (IC_{50} and n_H) obtained from [3]. Note that the potency of dofetilide (highlighted) at hERG was revised in this table from SP's personal communication with the authors.

Parameter	C _{max}	ETPC _{unbound}	I _{Na}		I _{Ca}		I _{Kr}	
	(µg/mL)	(μM)	IC ₅₀	h	IC ₅₀	h	IC ₅₀	h
Drug								
amiodarone	2.5	0.0007747	0.9754	-0.7462	4.832	-0.85	0.7557	-0.8169
astemizol	0.004	0.0002878	1.862	-1.532	0.9878	-2.531	0.02812	-1.745
bepridil	1.27	0.03463	0.6465	-1.155	1.455	-2.317	0.1302	-1.461
cisapride	0.06	0.002579	2.072	-0.894	4.278	-1.378	0.01472	-1.326
dofetilide	0.002	0.0016	2.095	-0.329	2.265	-0.8969	0.038282	-1.983
d,l-sotalol	4	14.68					356.4	1.023
Parameter			I _{Ks}		I _{K1}		I _{to}	
			IC ₅₀	h	IC ₅₀	h	IC ₅₀	h
Drug								
amiodarone								
astemizol								
bepridil			6.0312	-1.779			4.521	-1.853
cisapride								
dofetilide								
d,l-sotalol								

Results

ReRa separated bepridil (range = -0.92 to -0.87) from dl-sotalol (-1.04 to -0.98), amiodarone (-1.06 to -1.01), astemizole (-1.07 to -1.02) and dofetilide (-1.07 to -1.02) (Fig 2). Additional ion channel affinities of bepridil beyond those specified for the other compounds shown here maybe an explanatory variable (Fig 2).

Fig 2. ReRa discriminates between compounds that have different and known propensities to block physiological currents underlying conduction and repolarisation of the cardiac action potential.

Conclusion

Future work will focus on extending this to other compound types and expand this method to understand whether this composite measure can capture inter-subject population variability. This biomarker may have utility as an 'early' indicator of pro-arrhythmic potential.

References

- 1. Polak S et al, (2015). AAPS J. doi:10.1208/s12248-015-9773-1
- 2. O'Hara T et al, (2011). PLoS Comput Biol 7 (5):e1002061.
- 3. Okada J-i et al, (2015). Science Advances 1 (4)

Methods

Simulation of an episode or epoch (10,000 ms, sampled every 1 ms) of action potentials in both placebo and drug exposed conditions from a single female subject (34 years) was performed using the O'Hara-Rudy model [2] in the Cardiac Safety Simulator (CSS v2.0, Simcyp).

Equation 1.

Repolarisation Rate $(mV/ms) = \frac{\Delta(V_{m,90} - V_{m,50})}{\Delta(APD_{00} - APD_{50})}$