Prediction of the oral clearance of tolbutamide in individuals with different CYP2C9 genotypes

using in vitro enzyme kinetic data

¹Simcyp Limited, Sheffield, UK, ²Academic Unit of Clinical Pharmacology, University of Sheffield, UK. Correspondence to I.almond@simcyp.com

The University Of Sheffield.

BACKGROUND

- We have previously shown that the oral clearance (CL_{po}) of S-warfarin and its associated variability can be predicted successfully using genotype specific CYP2C9 enzyme activity and liver abundances.¹ We have now applied this approach to tolbutamide, a drug that is metabolised mainly by CYP2C9 but also by CYP2C19.
- For CYP2C19 there are 2 phenotypes, poor metaboliser (PM) and extensive metaboliser (EM), governed by the presence or absence of a null allele. However, a PM phenotype for CYP2C9 is not as easily defined, as polymorphisms are associated with decreased rather than absent activity.
- The aim of this study was to evaluate and combine published data on CYP2C19 PM frequencies and CYP2C9 genotype specific tolbutamide kinetic data for use in the prediction of CL_{ro} values.

METHODS

- Mean values of CYP2C19 PM frequency, CYP2C9 genotype frequencies and liver abundances were weighted for study size.
- Tolbutamide intrinsic clearances (CL_{int}) obtained from different in vitro systems were combined after application of inter system extrapolation factors² (ISEF). The free fraction in microsomal incubations (fu_{mic}) in each study was also noted.
- Percentage decreases in intrinsic clearance (CL_{int}) with respect to wild type (*1/*1) enzyme were calculated, assuming that the *in vitro* activity of heterologously expressed variant enzymes represented the respective homozygous genotype. Values of CL_{int} in heterozygous genotypes were assumed to be the average of those for homozygotes (Figure 1).
- All available in vivo data describing the CL_{po} of tolbutamide in different CYP2C9 genotypes were combined (weighted for study size) to give reference values for assessment of the predictions.

Figure 1 A schematic representation of procedure used to calculate genotype specific CL_{mis} . Each % CL_{int} of tolbutamide relative to *1/*1 was calculated assuming the *in vitro* activity of rCYPs represented the respective homozygote genotype in HLM. Values for heterozygotes were the average of homozygote CL_{mis}

METHODS (CONT.)

The derived values of CYP2C19 PM frequency and tolbutamide CL_{int}s (with associated fu_{mic}) for each genotype were then used in conjunction with Caucasian CYP2C9 genotype frequencies and genotype specific abundances (Meta-analysis¹) to simulate the *in vivo* CL_{po} of tolbutamide for each genotype using Simcyp Software (Version 6.0).

RESULTS

References 3-11

Based on 14 studies (details presented in Reference 1)

- Based on 9 independent studies³⁻¹¹ in European Caucasians (5138 subjects), the CYP2C19 PM frequency was 2.4% (Table 1).
- Genotype frequencies (Table 2) and genotype specific enzyme abundance data (Figure 2) were compiled in meta-analyses¹.

Table 1 Meta-analysis of CYP2C19 PM phenotype frequencies in European Caucasians

	CYP2C19 Meta-analysis				
	Method	Total n	PM n	% PN	
Allabi et al., 2003	Genotyping	121		1.6	
Drohse et al., 1989	Phenotyping	358	9	2.5	
Jacqz et al., 1988	Phenotyping	132	8	6.1	
Kupfer & Preisig, 1984	Phenotyping	221	12	5.4	
Marandi et al., 1997	Phenotyping	218	5	2.3	
Roddam et al., 2000	Genotyping	952	28	2.9	
Sanz et al., 1989	Phenotyping	253	7	2.8	
Tamminga et al., 1999	Phenotyping	2607	47	1.8	
Zackrisson et al., 2004	Genotyping	276	5	1.8	
Weighted Mean %				2.4	

Table 2 Meta-analysis of CYP2C9 genotype frequencies in European Caucasians¹

	Genotype Frequency (%)							
	*1/*1	*1/*2	*1/*3	*2/*2	*2/*3	*3/*3		
Weighted Mean %	67.2	18.6	11.1	1.1	1.7	0.3		
Total n	2297	629	376	37	59	10		

Figure 2 Meta-analysis of CYP2C9 abundances for WT (*1/*1), intermediate (*1/*2, *1/*3, *2/*2, *2/*3) and slow (*3/*3) genotypes. Data are expressed as mean ± s.d. The size of circles reflect the number of observations. — indicates the weighted means derived from the meta-analysis!

RESULTS (CONT.)

- Percentage decreases in CL_{int} for CYP2C9*1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 were 16.3, 40.2, 32.7, 56.6, and 80.5%, respectively (6 independent studies¹⁷⁻²¹).
- Combined median observed CL_{po} values for tolbutamide were 0.92, 0.80, 0.50, 0.72, 0.46 and 0.14 for *1/*1 (n=11), *1/*2 (n=9), *1/*3 (n=9), *2/*2 (n=3), *2/*3 (n=3) and *3/*3 (n=3), respectively.^{22,23}
- A significant correlation was found between the predicted and experimentally observed (in vivo) values of the CL_{po} of tolbutamide in the various CYP2C9 genotypes (r² = 0.97; p < 0.001)
- Despite the paucity of in vivo data for some of the rare genotypes (n < 6 subjects), the rank order of predicted and observed CL_{po} values in the different genotypes was the same (Figure 3a).
- Predicted values of CL_{po} were consistent with observed values (1.2 1.6-fold) for all CYP2C9 genotypes (Figure 3b). Generally, predicted variability was greater than that observed but it is important to note the small sample size available for observed data.

Figure 3 a) Predicted and observed CL_{po} of tolbutamide in different genotypes and b) comparison of predicted and observed values and their associated variability. Data are expressed as medians \pm 5th and 95th percentiles

CONCLUSIONS

• The combination of in vitro rCYP kinetic data with genetic and demographic information allows accurate prediction of tolbutamide CL_{no} values in individuals with different CYP2C9 genotypes.

REFERENCES

19 Daly et al., 2005, Personal Communication
19 Daly et al., 2001; Pharmacogenet, 11: 223-235
19 Annazaki et al., 2005, Personal Communication
19 Gentest (www.gentest.com)
19 Gentest (www.gentest.com)
19 Takanashi et al., 2000; Pharmacogenet, 6: 341-349
19 Takanashi et al., 2000; Pharmacogenet, 10: 95-104
19 Guo et al., 1996; Xenobiotica, 35: 635-861
20 Veronese et al., 1993; Biochem J. 289: 533-538
1944; Pitarmacogenet, 4: 39-42
24 Kirchheiner et al., 2002; Pharmacogenet, 12; 101-109
21 Lee et al., 2002; Clin Pharmacogenet, 12; 105-109

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to Professors Ann Daly and Hiroshi Yamazaki for sharing their unpublished CYP2C9 abundance data.