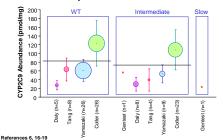
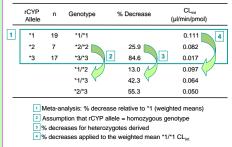
Prediction of the oral clearance of S-warfarin in CYP2C9 senotypes from *in vitro* enzyme kinetic data

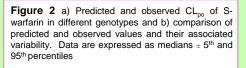
LM Almond¹, K Rowland-Yeo¹, EM Howgate¹, GT Tucker^{1,2} and A Rostami-Hodjegan^{1,2} ¹Simcyp Limited, Sheffield, UK, ²Academic Unit of Clinical Pharmacology, University of Sheffield, UK *Correspondence to I.almond@simcyp.com*

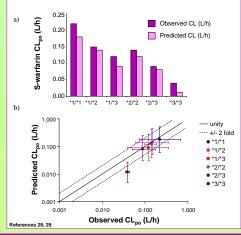
INTRODUCTION


- In vitro studies have indicated that the 2 main allelic variants of CYP2C9 prevalent in Caucasians (*2 and *3) show reduced catalytic activity compared to wild type (*1).
- The aim of this study was to evaluate and combine published data on the frequencies, liver enzyme abundances and *in vitro* kinetic data for specific CYP2C9 genotypes, in order to predict corresponding *in vivo* oral clearances (CL_{no}) of S-warfarin.

METHODS


- An extensive search of the available literature was carried out; each study was evaluated and data from independent sources combined.
- In combining the data, genotype frequencies and CYP2C9 liver abundances were weighted for study size (inclusion and exclusion criteria are available on request).
- Owing to a paucity of CYP2C9 genotype specific abundance values, data were combined to give mean enzyme abundances for fast (*1/*1), intermediate (*1/*2, *1/*3, *2/*2, *2/*3) and slow (*3/*3) metaboliser genotypes.
- S-warfarin intrinsic clearances (CL_{int}) in different in vitro systems were combined after application of inter system extrapolation factors¹ (ISEF). The free fraction in microsomal incubations (fu_{mic}) in each study was also noted.
- Genotype specific CL_{int} values with respect to *1/*1 enzyme were calculated, assuming that the *in vitro* activity of rCYP variant enzymes represented the respective homozygous genotype. Values of CL_{int} in heterozygous genotypes were assumed to be the average of those for homozygotes.
- All available *in vivo* data describing the CL_{po} of S-warfarin in different CYP2C9 genotypes were combined (weighted for study size) to give reference values.
- The derived values (genotype frequencies, abundances and S-warfarin CL_{int}s with associated fu_{mic} values) were used to simulate the CL_{po} of S-warfarin for each genotype using Simcyp Software (Version 6.0).


able 1 Meta-analysis of CYP2C9 genotype equencies in European Caucasians						
	Genotype Frequency (%)					
	*1/*1	*1/*2	*1/*3	*2/*2	*2/*3	*3/*3
Aithal et al., 2000	60.0	20.0	17.0	0.0	2.0	1.0
Allabi et al., 2003	67.0	18.2	11.6	0.0	1.6	0.8
Brockmoller et al., 2005	66.2	15.8	13.0	0.0	2.9	0.7
Burian et al., 2002	63.5	25.4	9.3	0.85	0.85	0.0
Coller et al., 2002	54.3	17.4	19.6	2.2	6.5	0.0
Gaikovitch et al., 2003	67.9	18.3	11.4	0.7	1.4	0.3
Jetter et al., 2004	57.7	26.9	11.5	3.8	0.0	0.0
Pederson et al., 2004	68.8	19.2	8.3	1.4	2.2	0.0
Stubbins et al., 1996				3.0		1.0
Taube et al., 2000	69.9	19.1	9.4	0.5	1.1	0.0
van der Weide et al., 2001	61.7	15.0	15.0	5.0	3.3	0.0
Yang et al., 2003	62.3	19.9	10.6	2.6	4.0	0.7
Yasar et al., 1999	66.7	18.6	11.6	0.5	1.9	0.7
Yasar et al., 2001	68.1	17.8	11.1	1.2	1.5	0.3
Weighted Mean %	67.2	18.6	11.1	1.1	1.7	0.3
Total n	2297	629	376	37	59	10


Figure 1 Meta-analysis of CYP2C9 abundances for WT (*1/*1), intermediate (*1/*2, *1/*3, *2/*2, *2/*3) and slow (*3/*3) genotypes. Data are expressed as mean \pm s.d. The size of circles reflect the number of observations. — indicates the weighted means derived from the meta-analysis

RESULTS

- Based on 14 independent studies, the frequencies of *1/*1, *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 genotypes were estimated to be 67.2, 18.6, 11.1, 1.1, 1.7 and 0.3%, respectively (Table 1).
- Mean enzyme abundances for fast (*1/*1), intermediate (*1/*2, *1/*3, *2/*2, *2/*3) and slow (*3/*3) metaboliser genotypes were 83.4, 75.8 and 23.0 pmol/mg of liver microsomal protein, respectively (5 sources; Figure 1). All studies used rCYP standards to quantify protein concentrations.
- The percentage decreases in CL_{int} relative to *1/*1 for *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 were 13.0, 42.3, 25.9, 55.3, and 84.6%, respectively (9 independent studies; Table 2).
- Combined median observed CL_{po} values for S-warfarin were 0.22, 0.15, 0.12, 0.14, 0.09 and 0.04 for *1/*1 (n=201), *1/*2 (n=43), *1/*3 (n=36), *2/*2 (n=2), *2/*3 (n=4) and *3/*3 (n=2), respectively^{28, 29}.
- There was concordance in the rank order of predicted and observed values, despite the few *in vivo* data available for some of the rare genotypes (Figure 2a).
- A significant correlation was found between the predicted and observed (*in vivo*) values of the CL_{po} of S-warfarin in the various genotypes (r² = 0.96, p < 0.001). Predicted values of CL_{po} were consistent with observed values (1.1-1.3-fold; Figure 2b) with the exception of the value for the very rare *3/*3 genotype (3.3-fold).

CONCLUSIONS

These data indicate that the combination of *in vitro* rCYP kinetic data with genetic and demographic information allows accurate prediction of the CL_{po}of S-warfarin in different genotypes, although further data are required for the rare *3/*3 genotype.

REFERENCES

 Pinotor et al., 2004. Xenobacka, 34. 151-178

 Anhai et al., 2003. Pharmacogenetis, 19. 51-537

 Yabai et al., 2003. Pharmacol, 56. 53-637

 Yabai et al., 2003. Pharmacol, 56. 53-637

 Yabai et al., 2003. Pharmacol, 56. 153-637

 Yabai et al., 2002. Pharmacol, 56. 153-167

 Yabai et al., 2002. Pharmacol, 56. 155-171

 Yabai et al., 2002. Pharmacol, 56. 155-171

 Yabai et al., 2003. Eur J Clin Pharmacol, 58. 303-312

 Yabai et al., 2004. Eur J Clin Pharmacol, 58. 303-312

 Yabai et al., 2006. Bharod, 56: 151-1519

 Yaha et al., 2006. Bharod, 56: 151-1519

 Yaha et al., 2003. Fundam Clin Pharmacol, 77.37-376

 Yabai et al., 2004. Pharmacol, 77.37-376

 Yabai et al., 2004. Pharmacol, 77.37-376

Vasar et al., 2001; Drug Metab Dispos, 29, 1051-1056 Daly et al., 2005; Personal Communication Tang et al., 2005; Ahramosopenisci, 11: 223-235 Vannazak et al., 2006; Personal Communication Disposed (et al.), 2006; Personal Communication Dischart et al., 2007; Mol Pharmaco, 400; 383-387 Hahange at al., 2008; And Bochem Bochey, 333: 447-488 Sultiva-Holsen et al., 1985; Informaco, 400; 383-387 Hahanash et al., 2009; Pharmacogenetics, 10, 551-01 Vannazak et al., 1986; Biochem Pharmacol, 58, 243-261 Vannazak et al., 1996; Biochem Pharmacol, 58, 243-261 Sociolo et al., 2002; Clin Pharmacol Ther, 72, 702-710

ACKNOWLEDGEMENTS

ould like to express our sincere gratitude to Professors Ann Daly and Hiroshi Yamazaki for sharing their 29 abundance data.

The

University Of

Sheffield.