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INTRODUCTIONINTRODUCTION

DATA COLLECTIONDATA COLLECTION

RESULTSRESULTS
● For each ionisation state class a strong correlation of logKmic with logPo:w was obtained3 :

Predominantly ionised bases: logKmic = 0.58×logP – 2.02 [r2 = 0.73] ; Predominantly neutral compounds: logKmic = 0.46×logP – 1.51 [r2 = 0.61]

Predominantly ionised acids: logKmic = 0.20×logP – 1.54 [r2 = 0.64]

• To build robust models for the prediction of fumic from physico-chemical properties.
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An important aspect of the extrapolation of in vivo drug clearance from data obtained with liver or recombinantly expressed microsomal systems is the knowledge of unbound drug 
concentration in the in vitro system1. In particular, for lipophilic compounds the prediction of clearance can be improved considerably by accounting for non-specific microsomal binding of 
substrate, expressed as the unbound drug fraction in a microsomal incubation (fumic). Thus, it is of interest to be able to predict fumic using in silico models. Here we describe the 
prediction of hepatic fumic based upon readily available physicochemical properties viz. acid-base-neutral class, ionisation state and logPo:w. The results obtained represent a significant 
improvement on a previously reported model for the prediction of fumic from physicochemical properties2.

● A large, diverse, unpublished dataset (n = 135 different drugs) was 
collected from Simcyp Consortium members (www.simcyp.com). This was 
complemented by other data from the literature or unpublished data from 
academia (n = 75); bringing the total number of drugs (after consolidation 
and cleaning) to 156. 

● Proprietary data was ”anonymised” (chemical structure was not known) 

● The experimental data comprised fumic measurements, typically at or 
around 1 µM (see also assumptions section), with human or rat liver 
microsomes (where comparison was possible there was no significant 
difference between human and rat fumic values).

● Experimental or predicted pKa and logPo:w values were used as covariates.

● fumic values were adjusted to a microsomal protein concentration of 1
mg/ml using Equation 1 before building the models.

● Microsomal binding is non-specific. 

● The system is a non-saturable microsome-buffer phase equilibrium which can be 
expressed in the form of a partition coefficient (Kmic) where:

Kmic = (1 – fumic) / fumic

ASSUMPTIONS AND METHODSASSUMPTIONS AND METHODS

● fumic values at any given protein concentration (mg/ml) can be adjusted to fumic at 1 
mg/ml protein concentration using the method of Austin et al2:

• To assess the performance of previously reported models for the prediction of fumic

from physico-chemical properties.

● Compounds were divided into basic, neutral and acidic classes

● For each of these classes separate models were built for logKmic vs logPo:w

● All models were validated using repeated leave-many-out crossvalidation (≡ multiple 
random test sets)
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A large dataset, collected from Simcyp Industrial Consortium members and the literature, has enabled both the assessment of previously published models for the prediction of fumic and 
the development of new more predictive models. Based on the comparisons made using this dataset, the Simcyp Model appears to perform significantly better than the Austin Model. 
The Hallifax Model, while performing well for basic and neutral compounds, performs poorly with acidic compounds and its non-linear form lacks experimental support. The variance in 
fumic not explained by logP alone can in part be attributed to the often significant intra- and inter-laboratory experimental measurement differences. Information on structural attributes of 
the compounds may help to explain some of the residual variability, but would add complexity and detract from practicality. 
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Comparison of the Simcyp Models with Previously Reported Comparison of the Simcyp Models with Previously Reported 
ModelsModels

The Simcyp Models use logP alone as a covariate of fumic while other models have used 
"logP|D" (i.e., logP for bases and neutrals or logD for acids):

Austin Model2 [n = 56]: logKmic= 0.56×logP|D – 1.41 

Hallifax Model4 [n = 92]: logKmic= 0.072×logP|D2 + 0.067×logP|D – 1. 126
The Austin Model tends to under-predict the fumic of basic (Fig 1) and neutral (Fig 2) 
compounds compared to the Simcyp Model (Figs 2 & 3) while the Hallifax model 
provides similar predictive accuracy to that of the Simcyp Model. However, the 
predictions of the Hallifax model for acids are much poorer than those of the other 
models (Fig 4). 
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r2 = 0.69
RMSE = 0.18

Fig 1: Experimental fumic vs Predicted fumic: 
Austin Model for basic compounds

Fig 3: Experimental fumic vs Fitted fumic: 
Simcyp Model for basic compounds

-0.1 ≥ logP ≥ 7.6

Fitted fumic
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Fig 2: Experimental fumic vs Predicted fumic
by different models for neutral compounds
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Simcyp Model:  r2 = 0.76
Austin Model:   r2 = 0.67
Hallifax Model: r2 = 0.77

-0.7 ≥ logP ≥ 6.0

Predicted fumic

(1) Outlier excluded 
from r2 scores and 

trend lines for Austin 
and Hallifax Models.

0.5 ≥ logP ≥ 6.5

Predicted fumic
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Fig 4: Experimental fumic vs Predicted fumic
by different models for acidic compounds

For all acids fumic ≥ 0.5

Simcyp Model:  r2 = 0.76
Austin Model:   r2 = 0.67
Hallifax Model: r2 = 0.77

Hallifax Model vs Austin Model
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Fig 5.: Relationship between logP|D and Predicted logKmic by 
the Hallifax and Austin Models
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Furthermore, the non-linear 
form of the Hallifax Model 
(Fig 5) means that where 
logP|D < ~0 logKmic
increases with decreasing 
logP|D; a relationship that 
lacks experimental 
support5.

(1)

-0.1 ≥ logP ≥ 7.6


