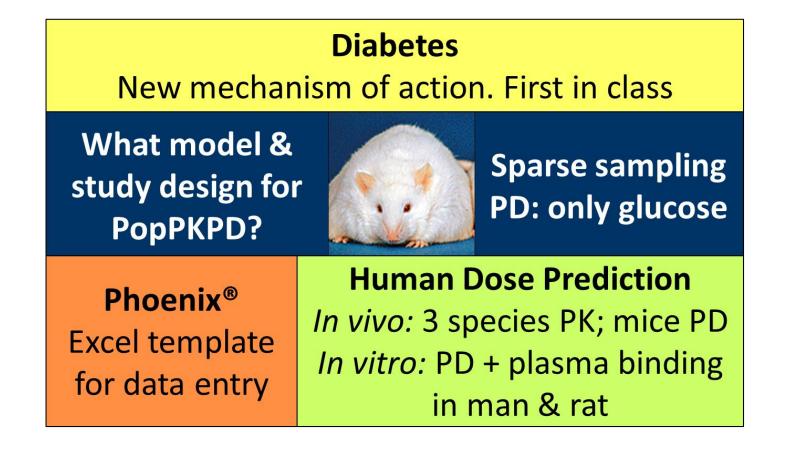


Population PKPD modeling of an anti-diabetic compound with a new mechanism of action in ob/ob mice to predict the human dose C. Falcoz (2), S. Bozec (1), D. Cravo (1), H. Merdjan (2), S. Bolze (1) (1) Poxel SA, Lyon, France; (2) Pharsight Consulting Services, part of Certara™, St. Louis, MO, USA

INTRODUCTION

PXL is an anti-diabetic agent with a new mechanism of action developed in Type 2 diabetes. An early readout on a likely efficacious human dose was required. In ob/ob mice, one of the disease models, a PKPD correlation was apparent from preliminary glucose data at 1h after 8 days of dosing. This initiated a programme with the design of new studies for PK and PKPD population modelling in mice, and allometry to predict the human dose.

OBJECTIVE


To predict a likely clinical efficacious dose for PXL based on *in vitro* (IVT) activity data, PKPD modeling in ob/ob mice, and a single endpoint, glucose.

RESULTS

Study design. Doses of 25, 50, 75 and 100 mg/kg BID (semi-regular 8am/4pm) were selected. Samples taken after the morning dose were split between D1 and D8; trough samples were taken in-between. PK study: 9 mice/dose, 3 mice/time, 5 samples/mice. PD study: 30 mice/dose, 4 PD and 1 PK samples/mice.

PopPK. The objective of the model was to best represent PXL concentrations for PKPD modelling. A 1st order absorption 2-compartment model was developed, with betweensubject variability (BSV) on CL, V and V2; the kinetics was proportional with dose.

Table 2. PopPK Parameters for PXL in ob/ob Mice

METHODS

- Exploration of early and sparse PK and glucose data justified a PKPD approach based on glucose only levels
- Specific PK and PKPD studies were designed in ob/ob mice under experimental constraints. Glucose and PXL concentrations were measured over 8h following the morning dose (0, 25, 50 or 100 mg/kg BID).
- Population PK (PopPK) models were developed in normal and ob/ob mice
- PopPKPD indirect response (IR) models were developed in ob/ob mice
- Phoenix[®] software was used for exploratory analysis and Phoenix[®] NLME[™] for NLME (using FOCE algorithm). A template excel spreadsheet was designed for data entry and direct import into Phoenix[®]
- Simple allometry was used to predict human clearance (CL)

Parameter	Estimate	Units	SE	SE%
KA	5.27	1/h	1.849	35.1
V	0.355	L/kg	0.200	56.3
V2	3.14	L/kg	0.612	19.5
CL	0.487	L/(kg*h)	0.040	8.2
CL2	1.40	L/(kg*h)	0.149	10.6
Residual error SD	0.570		0.042	7.4
DV (obs) vs. IPRED (normal coordinates)	DV (ob	os) vs. IPRED (log)	CWR	ES vs. TIME
2E+05 1E+05 0 0 0 1E+05 2E+	1E+06 1E+05 1000 1000 1000 100 100 100 100 100		SE ST C A C	y=-2

Figure 3 – Goodness of Fit Plots for the PopPK Model

Time (h)

PopPKPD. There was an apparent diurnal pattern for glucose; however data were not available over 24h and a constant baseline was used. The best model was an IR model with inhibition of glucose (G) production, with BSV on glucose production rate (Kin). Some model misspecification was partly due to the circadian baseline which could not be accounted for. Using individual PK parameters provided a lower estimate of IC50.

 $dG/dt = Kin * \{ 1 - Imax * C / (C + IC50) \} - Kout * G$

Table 3. PopPKPD Parameters for the Effect of PXL on Glucose in ob/ob Mice

Parameter	Estimate	Units	SE	SE%	
Kin	2.93	mM/h		1.13	39
Kout	0.182	1/h	().0667	37
Imax	0.613			0.221	36

A likely clinical efficacious dose range was predicted using IC50s estimated in mice, scaled to human based on IVT differences between species and plasma binding

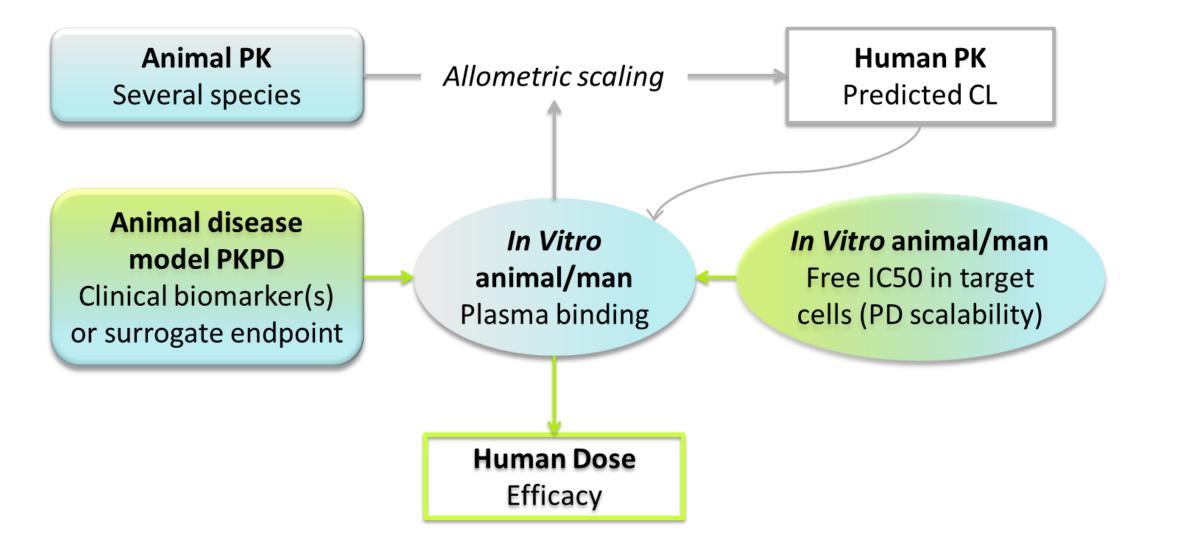


Figure 1 - Prediction of Human Therapeutic Dose from Animal PK & PKPD

RESULTS

Concept. The first pharmacological experiments showed that plasma glucose levels 1h post-dose after 8 days of treatment were correlated to PXL concentrations.

6529 ng/mL **IC50** 5223 80 **Residual error SD** 3.66 0.170 DV (obs) vs. IPRED **CWRES vs. TIME** 50 mg/kg BID (D8) Control (D8) ○ Observed 30 - IPRED 20 IPRED Time (h)

Figure 4 – Goodness of Fit Plots for the PopPKPD Glucose Model (Left: DV vs. IPRED and CWRES vs. time. Right: change from baseline in glucose on D8)

Allometric Scaling. Scaling with unbound concentrations led to lower and tighter predictions of human CL. For oral F in man, the average of animal values was used.

Table 5. Allometric Scaling Using Unbound Concentrations

Human Clearance (L/h)	Range*		
CL scaling (iv scaling)	*	0.6	0.9
CL/F from iv scaling, assuming $F_{man} = F_{avg} = 0.48$		1.3	1.9
CL/F assuming F _{man} = F _{avg} = 0.48 (po scaling)	*	1.1	1.3

* Using best methods⁷

Human Dose. The IVT difference in sensitivity between man and rat was 8 fold. The same sensitivity was assumed in rats and mice. The human dose providing, on average, 50 and 80% of maximal effect was predicted at 25 (range 21-26) and 100 (85-102) mg/d, respectively.

Glucose

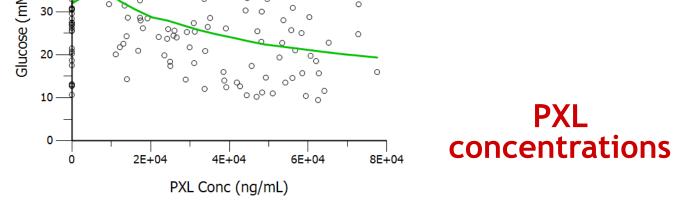


Figure 2 – Naïve Pool of 1h Glucose vs. PXL Concentrations from Initial Experiments

A literature evaluation focused on PKPD approaches for glucose only and oral antidiabetic agents, in rat and man (no references in mouse)¹⁻⁶. It allowed to select a priori the best model structure for PXL.

Table 1. Published PKPD Glucose Models for Non-Insulinic Compounds

Met formin ¹	Rosigli tazone ²	Piogli tazone ²	Rivogli tazone ²	Tesagli tazar ³	DPP4	PXL	Methyl prednisolone ⁴
Inhibition of glucose production							
x		х			х	?	
Stimulation of glucose utilization							
	х		х	х	х	?	
Stimulation of glucose production							
							х

¹Biguanides, ²Thiazolidinediones, ³PPAR agonists, ⁴Anti-inflammatory drug: the glucose increase is a side effect

CONCLUSION

- Integrating early sparse data and literature information allowed designing studies which led to successful modeling for a compound with a new mechanism of action, using glucose as the only endpoint and population PK and PKPD modelling in mice
- Using *in vitro* data in animal and man, human doses likely to produce a defined lowering effect on glucose were predicted, which should guide the FTIM study
- Phoenix[®] software allowed flexibility and rapidity in exploratory plots and in testing several PK and PKPD models

- Landersdorfer CB, Jusko WJ (2008). Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet 47:417-48 Sawamura R *et al.* (2011). PK-PD Analysis of Sitagliptin Using a Physiological Glucose-Insulin Model. ACoP Stepensky D *et al.* (2002). Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos 30:861-8 Sukumaran S *et al.* (2011). Mechanistic modeling of the effects of glucocorticoids and circadian rhythms on adipokine expression. JPET 337:734-46 Hong Y *et al.* (2008). Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol 48:696-707 Lee SH, Kwon K (2004). Pharmacokinetic-pharmacodynamic modeling for the relationship between glucose-lowering effect and plasma concentration of metformin in yolunteers. Arch Pharm Pos 27:806-10
- 5.
- metformin in volunteers. Arch Pharm Res 27:806-10
- Ring BJ et al. (2011). Predicting Drug Clearance in Humans using Non-clinical Data. Part 3: Comparative Assessment of Prediction Methods of Human Clearance. J Pharm Sci 100:4090-4110