

Mechanism-Based Inactivation of CYP2D6 by Methylenedioxymethamphetamine (MDMA): Differences between Expressed Enzyme Systems and Human Liver Microsomes

L.M. Van^{*1}, J.A. Hargreaves², K. Rowland-Yeo³, M.S. Lennard¹, G.T. Tucker^{1,3} and A. Rostami-Hodjedan^{1,3}

* Correspondence: L.M.Van@sheffield.ac.uk

¹Academic Unit of Clinical Pharmacology, University of Sheffield, UK ; ²AstraZeneca, DMPK, Alderley Park, Macclesfield, UK ;

³Simcyp Ltd, Blades Enterprise Centre, Sheffield, UK

INTRODUCTION

- recombinantly expressed cytochrome P450 systems (rCYP) a practical alternative for assessing drug metabolism and enzyme inhibition.
- rCYP systems are now used routinely for drug metabolism • studies in part, because of their compatibility with highthroughput protocols.
- Systematic evaluation of different rCYP systems in assessing mechanism-based enzyme inactivation (MBI) is lacking.

AIMS & OBJECTIVES

- To investigate the inactivation of CYP2D6 bv 3,4methylenedioxy-methamphetamine (MDMA) using different rCYP systems.
- To compare MBI kinetic parameters, kinact (the maximum rate of inactivation) and K₁ (the inactivation constant), in the different systems.

METHODS

- MDMA (0, 2, 5, 10 and 20 µM) was incubated with 30 pmol of enzyme from rCYP systems (CYPEX® bactosomes, Saccharomyces Cerevisiae (yeast) and BD Gentest® supersomes) expressing CYP2D6 or 0.2 mg human liver microsomes from a characterised liver sample (HLM6, *1/*1, 24 pmol of CYP2D6 per mg microsomal protein) at 37°C for 0, 2.5 and 5 min.
- This was followed by dilution (5-fold) into fresh NADPHregenerating solution (0.4 µmol of NADP+, 4 µmol of glucose-6-phosphate (G6P), 2 µmol of MgCl₂ and 0.4 units of of G6P dehydrogenase) containing dextromethorphan (50 μM).
- The reaction was allowed to proceed for an additional 10 min and dextrorphan (DOR) was assayed by HPLC with fluorescence detection (λ_{ex} : 280 nm; λ_{em} : 310 nm) to assess remaining CYP2D6 activity.

DATA ANALYSIS

- Inhibition of DOR formation was expressed as a percentage of the time-matched control value without MDMA.
- Initial slopes of %LN (Enzyme Activity Remaining) vs preincubation time were used to determine inactivation rates ,k_{obs}.
- k_{inact} and K_{I} values were calculated from k_{obs} (weighted by variance) by non-linear least squares fitting of equation 1 (GraFit®, Erithacus Software Ltd):

$$k_{obs} = \frac{k_{inact} \times I}{K_{I} + I}$$
 Equation 1

Mean values of k_{inact} and K_I observed using rCYPs and HLM were compared using the Z-test.

RESULTS

- The limited availability of human tissue has made the use of Inactivation profiles of CYP2D6 by MDMA observed with the two eukaryotic rCYP (BD Gentest® supersomes and yeast) and HLM6 (Fig. 1) were consistent, giving broadly similar MBI kinetic values (Table 1).
 - Kinetic parameter values could not be estimated with reasonable confidence using CYPEX® bactosomes (prokaryotic source).
 - The CYPEX® system was associated with the highest turnover rate amongst the rCYPs.

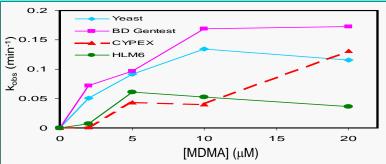


Figure 1. Relationship between inactivation rate constant $(k_{\mbox{\tiny obs}})$ and MDMA concentration. Values represent means of triplicate measurements.

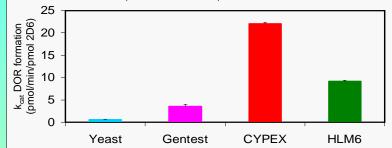


Figure 2. Turnover rates of the different systems with respect to the conversion of dextromethophan to dextrorphan. Value represent mean ± SE of triplicate measurements. NB: HLM6 estimated to have 24 pmol 2D6/mg protein.

Table 1:	Comparison of kinetic parameters (mean \pm SE; n = 3) characterising MBI of
	CYP2D6 by MDMA determined using different rCYP and HLM

Kinetic Data	Yeast (Microsomes)	BD Gentest [®] (Supersome)	CYPEX [®] (Bactosomes)	HLM6
k _{cat} (pmol min ⁻¹ pmol ⁻¹)	0.6 ± 0.08	3.5 ± 0.54	22 ± 0.31	9.2 ± 1.0
k _{inact} (min⁻¹)	0.13 ± 0.009	0.22 ± 0.02	0.007 ± 80^{a}	0.05 ± 0.03
Κ _ι (μΜ)	2.69 ± 0.82	4.01 ± 1.07	10.52 ± 292^{a}	2.01 ± 4.5
k _{inact} /K _I (mL min ⁻¹ nmol ⁻¹)	0.05	0.05	0.0007	0.02

(a) Values derived from double- reciprocal plots since fitting by non-linear regression did not converge

DISCUSSIONS & CONCLUSIONS

- Disparity between HLM and some rCYP systems observed in this study has also been noted with regard to other compounds known to cause MBI (e.g. paroxetine (unpublished data); and cimetidine (Maderia et al., 2004)).
- Quantitative prediction of the in vivo consequences of MBI will be compromised if kinetic values obtained from recombinant systems differ from those obtained with human liver.

REFERENCES

Maderia et al. (2004). Drug Metab. Dispos. 32: 460-467.

ACKNOWLEDGEMENT

L.M. Van is supported by an AstraZeneca PhD Studentship