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Evaluating the efficiency of payload delivery by ADCs using a minimal PBPK model 

OBJECTIVES Antibody drug conjugates (ADCs) aim to deliver a sufficient amount of payload
(cytotoxic drug) into tumor cells whilst minimizing exposure of healthy tissues to the free payload. The
amount of payload internalized into tumor cells depends on a number of factors including target
antigen level, ADC internalization rate, target binding affinity, de-conjugation rate and extent of off-
target binding, etc.. An integrated approach is needed to model the interplay of these multiple factors.
For this purpose a minimal PBPK model for ADCs coupled with a full PBPK model for released
payload was used to describe the disposition of ADCs in vivo and to evaluate the efficiency of
payload delivery to a solid tumor.

METHODS A minimal PBPK model for monoclonal antibodies (mAb) [1] was adapted to describe
each ADC species (defined by payload: mAb ratio, i.e., DAR) with payload release [2] leading to inter-
conversion between ADC species (figure 1). A tumor model with the same structure as that for tissue
was added into the PBPK framework, this is an extension of the solid tumor model developed by
Thurber et al [3]. For solid tumor, in contrast to normal tissue diffusion rather than convection is the
dominant mechanism for transport of ADC species across the blood vessel wall. The diffusion
process is mainly characterized by the average radius of tumor tissue surrounding each blood vessel

, representing the density of tumor blood vessels [3]. Full, quasi-steady state, and Michaelis-
Menten models for target-mediated drug disposition (TMDD) were extended to allow multiple ADC
species to compete for binding to a single target, with the additional possibility that target binding can
occur at multiple sites. Mass fluxes from all possible routes of drug release (including non-specific
catabolism in tissue and plasma, de-conjugation in plasma and tissue, and specific catabolism via
target binding and subsequent internalization) were tracked and summated. These fluxes are fed into
the full PBPK model for small molecule drugs, see Figure 2.

CONCLUSION A minimal PBPK model is developed for ADCs, which also incorporates a
mechanistic tumor model to allow the study of payload delivery to the tumor. The percentage of
injected drug (payload) being internalized into tumor cells was used to assess the efficiency of
payload delivery. In this simulation study, it is shown that a high efficiency of payload delivery can be
achieved by either a high level of antigen with a low internalization rate or a low level of antigen with
a high internalization rate, but was also dependent on several other factors, such as dose, binding
affinities to target and FcRn, and the density of tumor blood vessels. This complex interplay of
multiple factors exemplifies the need for an integrated modelling and simulation approach to
understand the disposition of ADCs.
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Figure 1 A schematic representation of a minimal PBPK model for ADCs. Y -- ADC species with DAR j. The model
encompasses (1) an additional tumor compartment, (2) binding of ADC species and target at multiple sites, (3)
tracking of mass fluxes of released payload from different routes of release, which can be incomplete and delayed [2],
so that (4) released payload can be mechanistically related to either on-target or off-target toxicity.

Figure 2 Mass fluxes generated from different routes of payload release are fed into a full PBPK model for small
molecule drugs. The model includes a tumor compartment with the action of both uptake and efflux drug transporters
accounted for.

The efficiency of payload delivery by ADCs to a solid tumor can be evaluated by defining the
percentage of injected payload being internalized into tumor cells, as shown below.

RESULTS Figure 3 shows typical outputs from the model. The kinetics of the payload show typical
formation-limited metabolite profile. Rates of declining conjugated Ab, conjugated drug, and released
payload are converging as time progresses, see figure 3B. In addition, the model shows a good
sensitivity of the averaged DAR profile on deconjugation rates (kdec), see Figure 3D.

Figure 3 Typical ADC profiles generated by the ADC model for IV dose of D = 1 mg/kg with initial DAR distribution:
, 0,1,⋯ , 8, = 0.02, = 0.13, = 0.23, = 0.26, = 0.19, 	= 0.10, = 0.05, = 0.02, = 0.02

(data from Bender’s paper [4]). The simulation was done without target binding and deconjugation rate was set as
1 1 , 0.315 [2]. (A) concentration profiles of individual ADC DAR species. (B) plasma total Ab,

conjugated Ab, unconjugated Ab, conjugated drug, and released drug and their half-live are presented. (C)&(D)
Average DAR profiles (on linear and log scale) in plasma defined by DAR ∑ ∙ ∑ .

Figure 5 Simulations of maximal %ID for a range of antigen level [0, 0.4 ] and varying internalization rate constant
=0.01, 0.05, 0.1, 0.2, 0.5 (1/h). (A) two different doses; (B) two different binding affinities.

Figure 6 In this simulation tumor antigen level is fixed to 0.2 , and = = 0.1 (1/h), j=0,1, ⋯, 8. (A) Impaired
binding affinity to FcRn; (B) Impaired binding affinity to antigen.

One general issue in target selection for ADC drugs is whether more efficient payload delivery would
be achieved with an antigen that has high expression and a low internalization rate or with an antigen
that has low expression and a high internalization rate. To address this issue some simulations were
performed.

The impact of antigen level in normal tissue on %ID in the tumor was first simulated, see Figure 4A.

 The time for %ID to reach steady-state (i.e. the maximal percentage of payload delivery
achievable) varied with the tissue to tumor antigen ratio

 The level of the maximal %ID is dose-proportional and depends on (see figure 4B) due to
diffusion-limited delivery of ADCs to tumor.

 The maximal %ID is achievable with a range of antigen levels and internalization rate
combinations at different doses (figure 5A) and with varying the ADC affinity to antigen (figure
5B).

 If conjugation decreases binding to FcRn or to target this can result in a reduction in %ID, i.e.,
efficiency of payload delivery into tumor cells (Figure 6)

Figure 4 The simulation is based on the initial DAR distribution and deconjugation rates with = 0.1/24 (1/h) used in
Figure 3. =2520 	 , =1.26 ( =0.5 nM), , =0.728 , = = 0.1 (1/h), j=0,1, ⋯, 8 for both
tissue and tumor. Tumor antigen level is fixed as =0.2 .

Validation of the tumor model was done using tumor uptake data for the huA33 antibody [5] by setting
DAR=0 in the model and by varying antigen levels and in realistic ranges. The clinical data
obtained by PET imaging [6] were well recovered (results not shown).


