Development of a Physiologically Based Pharmacokinetic Model of Buspirone and Its Active Metabolite 1-(2-Pyrimidinyl)-Piperazine to Estimate Drug-Drug Interaction and Food Effect

CERTARA Simcyp

Mian Zhang, Xian Pan, Iain Gardner

Certara UK Limited, Simcyp Division, Sheffield, United Kingdom

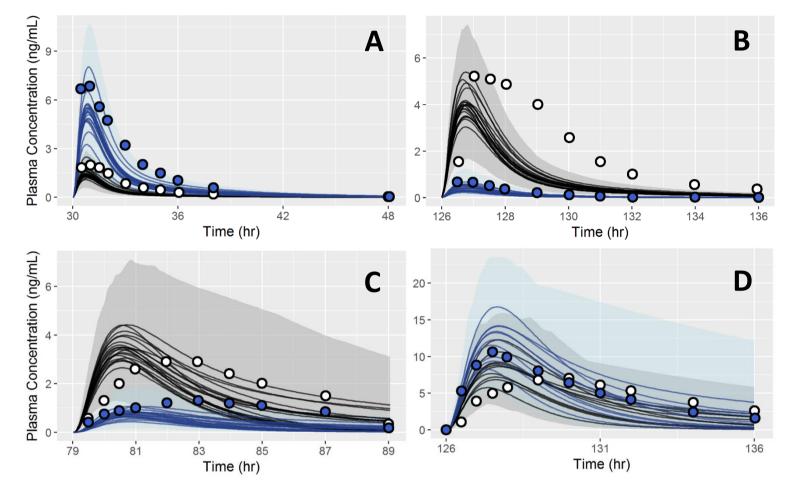
Background

Buspirone is an antianxiety agent that undergoes extensive first-pass metabolism in gut and liver^[1]. One of the metabolites, 1-(2-Pyrimidinyl)-Piperazine (1-PP), circulates at higher concentrations than buspirone and may play a significant role in the clinical effects after dosing buspirone^[2]. Clinical pharmacology studies indicate that strong inhibitors and inducers of CYP3A4 significantly change the oral exposure to buspirone and 1-PP, while food increases the oral exposure of buspirone almost 2-fold^[3].

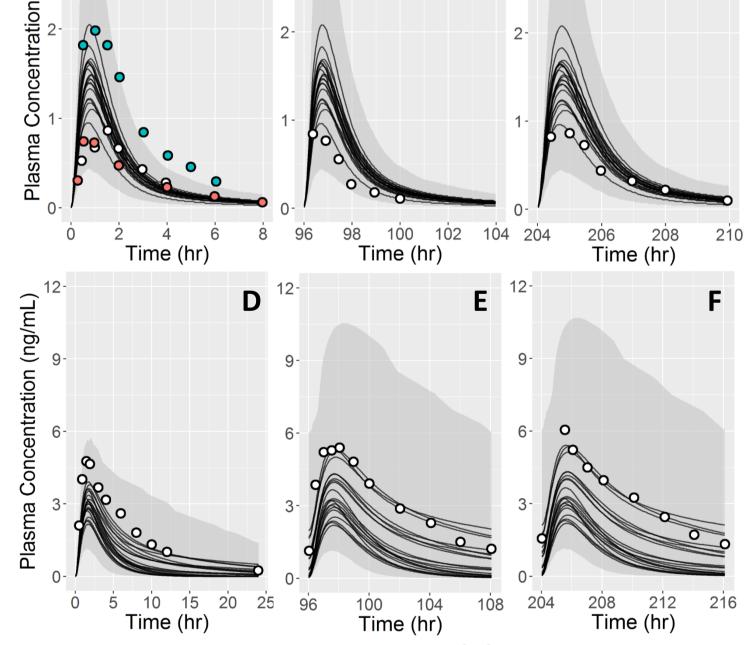
The aim of this study was to develop a Physiologically Based Pharmacokinetic (PBPK) model to predict the changes in oral exposure to buspirone and its active metabolite 1-PP, following concomitant CYP3A4 perpetrator use or food intake.

Methods

The PBPK model of buspirone was developed with the Simcyp Simulator V17R1. The Advanced Dissolution, Absorption, Metabolism (ADAM) model and a full PBPK model were applied to describe the absorption and distribution of buspirone, while a minimal PBPK model was adopted to describe the distribution of 1-PP. The models were parameterised based on physicochemical, in-vitro and clinical data that are available in the public domain^[3-6].


Results

The model predictions successfully recovered the plasma concentrationtime profiles of buspirone and 1-PP after oral administration of single and multiple doses of buspirone (**Fig. 1**).



Results

The model reasonably captured the plasma concentration-time profiles of buspirone and 1-PP under the interaction of CYP3A4 perpetrators (**Fig. 2**). The predicted mean AUC and C_{max} ratios of buspirone in the absence and presence of perpetrators or food intake were within 1.5-fold of the observed values, while the predicted mean ratios of 1-PP were within 2-fold of the observed values (**Fig. 3**).

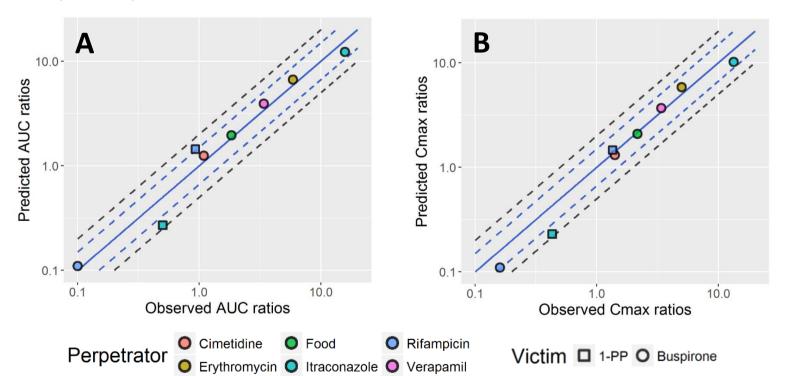


Figure 2. Simulated (solid lines) and observed (data points^[9,10,14]) plasma concentration-time (C-T) profiles of buspirone (A, B) and 1-PP (C, D) in the absence (black lines and white points) or presence (blue lines and points) of CYP3A4 perpetrators including (A) Verapamil (80 mg \times 5 in 29 hours), (B,D) Rifampicin (600 mg once daily for 5 days), (C) Itraconazole (100 mg twice daily for 4 days). The solid lines represent the predictions from individual trials. The

Figure 1. Simulated and observed (data points^[7-9]) plasma concentration-time profiles of buspirone **(A-C)** and 1-PP **(D-F)** after single and multiple oral administrations of 10 mg buspirone hydrochloride tablets. The black lines represent the predictions from individual trials. The grey-shaded area represents the 5th to 95th percentile of the total virtual population.

grey and blue-shaded areas represent the 5th to 95th percentile of the total virtual population in the absence and presence of CYP3A4 perpetrator, respectively.

Figure 3. Simulated and observed AUC **(A)** and C_{max} **(B)** ratios of buspirone and 1-PP in the absence and presence of various CYP3A4 perpetrators and concomitant food intake^[9,11-14]. The blue solid line represents unity. The blue and black dashed lines indicate 1.5 and 2-fold deviation from unity.

Conclusions

Collectively, the present study demonstrated the usefulness of PBPK in predicting oral exposure to buspirone under the interaction of a CYP3A4 inhibitor, inducer and food, supporting its further application in prospective prediction of DDIs between buspirone and other CYP3A4 perpetrators on the market or in the development pipelines.

References

- 1. Gammans, R.E., R.F. Mayol, and J.A. Labudde, The American journal of medicine, 1986. 80(3): p. 41-51.
- 2. Fava, M., Psychotherapy and psychosomatics, 2007. 76(5): p. 311-312.
- 3. Mahmood, I. and C. Sahajwalla, Clinical pharmacokinetics, 1999. 36(4): p. 277-287.
- 4. Gertz, M., et al., Drug Metabolism and Disposition, 2010. 38(7): p. 1147-1158.
- 5. Zhu, M., et al., Drug Metabolism and Disposition, 2005.
- 6. Raghavan, N., et al., Drug Metabolism and Disposition, 2005. 33(2): p. 203-208.
- 7. Barbhaiya, R., et al., European journal of clinical pharmacology, 1994. 46(1): p. 41-47.
- 8. Gammans, R., et al., Biopharmaceutics & drug disposition, 1985. 6(2): p. 139-145.
- 9. Lamberg, T.S., K.T. Kivistö, and P.J. Neuvonen, Clinical Pharmacology & Therapeutics, 1998. 63(6): p. 640-645.
 10. Kivistö, K.T., T.S. Lamberg, and P.J. Neuvonen, Basic & Clinical Pharmacology & Toxicology, 1999. 84(2): p. 94-97.
 11. Gammans, R.E., et al., Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 1987. 7(3): p. 72-79.
 12. Mayol, R., et al. Clinical Research, 1983. 31:631 A (abstract).
- Lamberg, T.S., K.T. Kivistö, and P.J. Neuvonen, British journal of clinical pharmacology, 1998. 45(4): p. 381-385.
 Kivistö, K.T., et al., Clinical Pharmacology & Therapeutics, 1997. 62(3): p. 348-354.

Gordon Research Conference, 8-13 July 2018, Holderness, NH, US Mian.Zhang@certara.com