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Introduction

Phoenix® NLMETM (Pharsight/Certara) provides several estima-
tion methods that can be used to do population analysis for a sys-
tem involved BQL data. These include the Laplacian method, the
quasi-random parametric expectation maximization (QRPEM)
method, and the non-parametric method. For all these meth-
ods, the cumulative distribution function evaluated at LOQ is
involved in calculating the likelihood. This can be easily handled
using the “bql" option in the observe statement.

•The Laplacian method involves explicit numerical optimization
of an approximate marginal likelihood, which is obtained by
approximating the marginal likelihood using a Laplacian
approximation. Hence, it requires evaluation of second-order
derivatives of the logarithm of the joint likelihood with respect
to random effects.

•Unlike the Laplacian method, the QRPEM method is a
member of expectation maximization methods. It is very
similar to the importance sampling based Monte Carlo
parametric expectation maximization (MCPEM) method,
with the exception that samples are based on low discrepancy
(quasi-random) sequence instead of the conventional
pseudo-random sequence to compute the required integral.
Note: The integral error resulting from the quasi-random
sequence decays much faster (at rate O(N−1) with N being
the number of samples) than that using the pseudo-random
sequence (at rate O(N−1/2)). Hence, the integrals in the
QRPEM method converge much faster than those in the
MCPEM method.

Figure 1: (left panel): histogram of 5000 normally distributed pseudo-random
points; (right panel): histogram of 5000 normally distributed quasi-random
points (right).

•Compared to parametric methods such as Laplacian and
QRPEM methods, the non-parametric method makes no
assumption on the distribution form of random effects. It
involves using a discrete distribution to approximate the
cumulative distribution function of random effects and hence
the resulting marginal likelihood can be obtained analytically.
Note: The non-parametric engine in Phoenix® NLMETM has
the capability of optimizing both probabilities and associated
support point positions.

Objectives

•To compare the capability of Laplacian and QRPEM engines
in Phoenix® NLMETM for population analysis of a complex
dynamic system with non-static BQL data;

•To use non-parametric engine as a post-processor for
parametric runs to detect any serious violation of normality
assumption such as bimodality.

Methods

The example used to test the capability of these three methods
is a highly nonlinear, multi-scaled and long-term HIV dynamic
model [1] with clinical data [1].
HIV Model [1]

Figure 2: Diagram of HIV model proposed in [1]. Model states T1 and T ∗
1

respectively denote the uninfected and infected activated CD4+ T cells, and
T2 and T ∗

2 respectively represent uninfected resting CD4+ T cells and latently
infected CD4+ T cells. Model states VI and VNI respectively denote infectious
and non-infectious virus, and E1 and E2 respectively represent activated and
memory HIV-specific CD8+ T cells. PI and RTI denote protease inhibitor and
reverse transcriptase inhibitor, respectively.
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Clinical Data [1]
•Consisting of 14 patients followed for varying lengths of time
between 2 and 6 years who all underwent antiretroviral
therapy and had at least one treatment interruption;

• Including total CD4+ T cells and non-static BQL viral load
(due to different assays used in the investigated period).

Setup
Both Laplacian and QRPEM engines started with same initial
values and were implemented using parallel computations with 4
processors running in the same computer using the same ODE
solver with the same setup. The QRPEM method uses 300 quasi-
random sample points for evaluation of the required integral. For
both engines, the sandwich method is used to calculate standard
errors.

Results

The Laplacian method versus the QRPEM method
•The convergence status and runtime for the Lapacian method
and the QRPEM estimation are summarized in the following
table.

QRPEM method Laplacian method
return code 1 3
optimal -2LL 58.8452 2064.18
engine runtime (secs) 9126.656 9139.297
number of iterations 151 3
SE runtime (secs) 400.547 17258.172
SE status successful failed

Table 1: -2LL denotes twice the negative log likelihood, SE stands for standard
error. Return code of 1 means sucessful convergence, and return code of 3
means that the line search step in the quasi-Newton direction failed to locate
a sufficiently better objective value than the current value.

•For both QRPEM and Laplacian methods, we obtained
reasonably good model fitting results for all the subjects
(Figure 3 shows model fitting results for an example patient
using the QRPEM estimation).

•For all the subjects except one, the residual mean square
errors obtained using the QRPEM are smaller than the
corresponding ones obtained by the Laplacian method.

This is expected for the following reasons.
•The QRPEM estimation does not involve numerical
differentiation while the Laplacian method does, and hence the
QRPEM method is more stable and reliable than the
Laplacian method.

•The estimates obtained by the QRPEM can be made as
accurate as desired to the true marginal likelihood estimates
(through increasing the number of random sample points)
while the Laplacian method cannot.

...

Figure 3: Model fitting results for an example patient, where red circles are the
actual observations, and green solid line denotes the predicated model solution.

•The Q-Q plots for posthoc values obtained by both Laplacian
and QRPEM methods suggest that there are discernible
divergences from normal distributions for some random effects.

•Plots of estimated cumulative distribution functions (CDF)
obtained by the non-parametric engine demonstrate that some
of these random effects seem to have bimodal shape
distributions (see figure shown below).

Conclusions

This example demonstrates that for population analysis of a com-
plex dynamic system with complicated data, the QRPEM esti-
mation is the method of choice and the nonparametric engine
should be used as a post-processor whenever there is a doubt of
the normality assumption.
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