

Comparison of *in vitro* and *in vivo* metabolic clearance estimates for the prediction of caffeine and theophylline pharmacokinetics in adults, children and neonates using a physiologically based model

INTRODUCTION

- Modelling and simulation is becoming an increasingly important part of the drug development process and may prevent unnecessary clinical studies or allow their more rational design.
- Simcyp provides a platform for modelling and simulation of drug absorption, distribution, metabolism and excretion (ADME) in virtual populations.
- In vitro-in vivo (IVIVE) extrapolation of drug clearance (CL) is combined with a physiologically based pharmacokinetic (PBPK) model, and absorption model to allow PK predictions with associated variability.
- Paediatric incorporates additional information on Simcyp developmental physiology and ontogeny of elimination pathways and has been used successfully to predict drug clearance in neonates, infants and children¹.
- The latest version of the Paediatric Simulator allows the prediction of concentration-time profiles and has increased options for estimation of metabolic clearance.

- To investigate the ability of two methods of CL_{int} determination : - *in vitro* kinetic data (V_{max}, K_m)
- *in vivo* data using a retrograde model

to predict plasma-concentration time profiles of the CYP1A2 substrates caffeine (CAFF) and theophylline (THEO) in neonates, children and adults.

METHODOLOGY

- Physicochemical and *in vitro* permeability data for CAFF and THEO contained within the Simcyp V9.10 Compound Database were used in all simulations. The PBPK model used was based on that described by Rogers and Rowland².
- Estimates of *in vitro* CL_{int} were calculated from literature V_{max} / K_m data determined using recombinantly expressed CYPs (rhCYP). V_{max} values were scaled to humanised values using an inter system extrapolation factor (ISEF) and K_m values were corrected for microsomal binding.
- For the retrograde model either *i.v.* (THEO) or oral (CAFF) data was used to back calculate a CL_{int} value (L/h; Eq 1 and 2). The proportional contribution of each enzyme was calculated for CAFF (CYP1A2 99%, CYP2E1 &CYP3A4 < 1% each) and THEO (CYP1A2 =89 %, CYP2D6, CYP2E1 & CYP3A4 <1% each)

METHOD B: CL_{int} from Retrograde Model

 $CL_{\text{int}H} = \frac{Q_H \times CL_{metH}}{fu_B \times (Q_H - CL_{metH})} \text{(Eq 1)} \quad CL_{\text{int}H} = \frac{CL_{po} \times F_G \times F_a}{fu_B} \text{(Eq 2)}$

Where CL_{metH} is the hepatic blood CL (CL_{iv}-CL_{renal}), Q_H is hepatic blood flow, fu_B is fraction unbound in blood, CL_{po} is oral clearance, F_G is fraction escaping gut metabolism and F_a is fraction absorbed.

Salem F¹, Barter ZE^{1,2}, Johnson TN^{2,3}, Rostami-Hodjegan A^{1,2} 1-Academic Unit of Clinical Pharmacology, University of Sheffield, 2- Simcyp Limited, 3- Pharmacy Department, Children's Hospital; Sheffield, UK

- Enzyme specific values of CL_{int} (L/h) were converted to a rate per pmol enzyme using average healthy volunteer population values of CYP abundance (pmol/mg), MPPGL (mg/g) and liver weight (g) (Simcyp Population Database V9.10).
- CL_{int} values were then entered into the Simcyp Simulator V9.10 (adults) and Paediatrics (neonates and children).
- Simulations replicating a range of adult and paediatric *in vivo* studies were performed for both CL_{int} methods (Table 1).
- Simulated concentration-time profiles were compared against literature profiles both visually and in terms of AUC ratio (Eq 3).
- The AUC ratios for each drug and CL_{int} method were combined to give an overall weighted ratio (Eq 4). Weighting was calculated using Eq 5, where n_i is the number of subjects in the ith study and N is the total number of subjects in all studies for that age group. The closer the AUC ratio to one the better the AUC estimate.

$Ratio = \frac{AUC_{Predictea}}{AUC_{Observed}} (Eq 3)$	Weighted Ratio = $\sum_{1}^{n} \left(\frac{AUC_{predictedi}}{AUC_{observedi}} * Weight_{i} \right) (Eq 4)$
\mathcal{W}	$veight_i = \frac{n_i}{m_i}$ (Eq 5)

Table 1: Summary of caffeine and theophylline in vivo studies						
Drug	Studies	Ν	Age (y)	Dose	Route	
CAFF-Adult	4 - 8	209	18 - 78	50 – 300 mg	Oral and IV	
CAFF-Paediatric	9	5	7 - 10	100 mg	Oral	
CAFF- Neonate	10 - 13	99	0.002 – 0.87	5 – 30 mg/kg	IV and Oral	
THEO-Adult	14 - 20	67	18 - 50	85 – 257 mg	Oral and IV	
THEO-Paediatric	21 - 23	44	1 - 16	3.5 – 5 mg/kg	IV and Oral	

RESULTS

- Representative concentration-time profiles from In Vitro method for CAFF and THEO in adults and children are shown in Figure 1.
- Overall results for the different CL_{int} methods in the different age groups are summarised in Table 2.
- Despite some under and over prediction of AUC, overall most weighted mean predictions were within 2-fold of observed values. A wide overlap in the range of AUC values predicted using the two CL_{int} methods was observed.

Table 2: Caffeine and theophylline AUC ratios in adults, children and neonates. Values represent weighted AUC plus the range from individual studies

Drug	CLint Method		Age Groups	
		Adult	Child	Neonates
CAFF	In vitro CL _{int}	1.14 (0.02- 1.54)	1.14	0.43 (0.02- 2.65)
	<i>In vivo</i> CL _{int}	1.41 (0.02- 1.71)	1.41	0.47 (0.02- 2.97)
THEC) In vitro CL _{int}	0.66 (0.40- 1.11)	0.80 (0.61- 1.15)	_
	<i>In vivo</i> CL _{int}	1.16 (0.81- 1.65)	1.12 (0.84- 1.53)	_

Figure 1: Predicted (using *In Vitro* method) and observed caffeine plasma concentration-time profiles in adults and children for Caffeine and Theophylline. Profiles are from the

In vivo data

Simulated data using *In Vitro* method 5th & 95th confidence intervals for the simulated data

• Overall the predicted concentration-time profiles for CAFF and THEO were close to the *in vivo* studies for adults and children.

- for CAFF and THEO.
- different CYP enzymes.
- 1. Johnson et al, Clin Pharmacokinet 2006
- 2. Howgate et al ,Xenobiotica 2006; 36: 4
- 3. Rogers and Rowland, J Pharm Sci 2006
- 4. Merdek et , Br J Clin Pharmacol, 2005; 5. Randinittis et al, Antimicrob Agents Ch
- 45: 2543- 2552
- 6. Kamimori et al, Inter J pharm, 2002; 23
- 7. Newton et al, Eur J Clin Pharmacol 198
- 8. Blanchard et al, pharm and Bioph, 198
- 9. Akinyinka, Eur J Clin Pharmacol, 2000;
- 10.Aranda et al , Arch Dis Child, 1979; 54:
- 11.Gorodischer et al, Eur J Pharmacol, 198 12.Lee et al, 1996; 18: 288- 293
- 13.Aranda et al, peditrics 1979; 94: 663- 6 14. Jonkman et al, Br J Clin pharmacol, 198 15. Gillum et al, Antimicrob Agents Chem
- 1866-1869 16. Sirmans et al, Clin Pharmacol Ther, 1988; 27: 29-34

© 2009 Simcyp Limited

CONCLUSIONS

• For CAFF the under-prediction of AUC in neonates is due to many of the studies involving premature babies. At present there is a lack of information on prematurity in the Simcyp Paediatric model.

• There was little difference in performance between the CL_{int} methods in terms of predicting the PK of CAFF and THEO from birth onwards. This suggests that the *in vitro* metabolic input values used are accurate

• Full evaluation of the different CL_{int} input methods requires extension of the current analysis to incorporate a range of drugs metabolised by

REFERENCES

; 45: 931– 56	17. Ramussen et al, Ovi, 1997, 56-62
73 – 97	18. Bowles et al, Antimicrob Agents Chemother, 1988; 32:
; 95: 1259-76	510 - 512
50: 486- 493	19.Boot et al, Pulm Pharmacol Ther. 2008; 21: 573-577
emother, 2001	;20.Haruta et al, Int J Pharma 2002; 233: 179- 190
	21. Arnold et al, Eur J Clin Pharmacol, 1981; 20: 443- 447
: 159-167	22. Kumar et al, Inter J Clin Pharmacol Ther Toxicol, 1989;
31;21: 45- 52	12:588- 592
3; 11: 109- 126	23.Lee et al, Singapore Med, 1983, 276- 279
6:153- 158	
946-949	
2; 22: 47- 52	
68	
39; <mark>27</mark> : 795- 802	<u>)</u>
other, 1996; 40	