

Bias in Estimates of Metabolic Constants When Applying the Michaelis-Menten Equation to Drugs Exhibiting Atypical Enzyme Kinetics

M Jamei¹, A. L. Finnoy², G. T. Tucker^{1,2} and A. Rostami-Hodjegan^{1,2}

M.Jamei@Simcyp.com

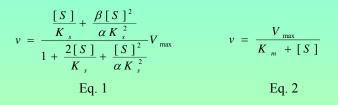
1- Simcyp Ltd, Blades Enterprise Centre, John St, Sheffield, S2 4SU, UK 2- Academic Unit of Clinical Pharmacology, University of Sheffield, Sheffield, UK

Introduction

Homotropic co-operativity in drug metabolism by CYP enzymes observed *in vitro* has minimal impact on *in vivo* clearance at therapeutic drug concentrations (Jamei 2005). Nevertheless, 'force fitting' of *in vitro* data that exhibit such behaviour by a simple Michaelis-Menten function may introduce bias when predicting *in vivo* clearance.

We have investigated the effects of ignoring atypical *in vitro* kinetics and using a simple Michaelis-Menten model to predict kinetic parameters.

Methods


A CYP3A4-mediated reaction showing atypical enzyme kinetics (substrate inhibition) at high concentrations is the 6β -hydroxylation of progesterone. A two-site binding model (Eq. 1) and associated values of α (13.2) and β (0.41) (Lin 2001), together with a range of each of these values (0.01, 0.1, 1, 10, and 20) for 25 virtual compounds, were used to simulate (Microsoft Excel[®]) rates of metabolism *vs* substrate concentration. The single point concentration data were then fitted with the Michaelis-Menten equation (Eq 2.) using the proportional weighting option in GraFit Ver 5.

$$[E] + [P] \xleftarrow{K_{p}}[SE] \xleftarrow{\alpha K_{s}} [SES] \xrightarrow{\beta K_{p}} [ES] + [P] o$$

$$[K_{s} \downarrow \qquad \downarrow \alpha K_{s}$$

$$[E] \xleftarrow{K_{s}} [ES] \xrightarrow{K_{p}} [E] + [P]$$

A schematic of a two-site binding model.

Results

Using Eq. 1 and a set of α and β values, homotropic negative cooperativity (substrate inhibition) for a range of substrate concentrations was simulated and shown in Figure 1.

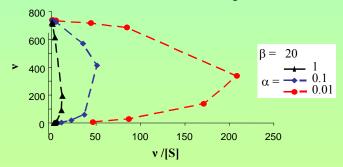


Figure 1 – Eadie-Hofstee graphs for different values of α and a constant β .

Figure 2 shows that fold errors in K_m prediction are dependent on α , particularly at $\beta > 1$. However, when $\beta \le 1$ the fold errors are almost insensitive to changes in α and the predicted K_m is about 10 fold less than the true value (see Figure 3).

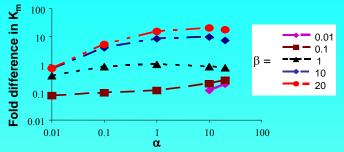


Figure 2 – The effect of α on the fold difference between apparent and true K_m .

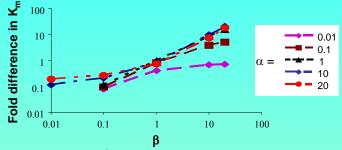


Figure 3 – The effect of β on the fold difference between apparent and true K_m .

Figure 4 illustrates that the fold differences between estimated and true V_{max} values are influenced only by β and α plays a minor role when it is less than 10.

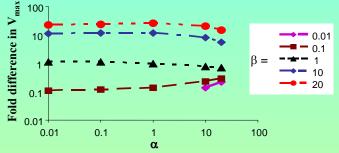


Figure 4 – The effect of α on the fold difference between apparent and true V_{max} .

Estimates of CL_{int} at very low, single point substrate concentrations (0.01 K_s) are insensitive to α at $\beta < 1$. However, at $\beta > 1$ values are mainly determined by α if it is less than 1.

Conclusions

The results confirm that bias (0.01 to 100 fold) in estimates of CL_{int} , V_{max} and K_m (K_s), and hence the prediction of drug clearance, can result if atypical *in vitro* enzyme kinetics are ignored and the data are fitted by simpler functions.

In vitro kinetics parameters should be estimated using the most appropriate model.

References

Jamei, M. et al. Drug Metabolism Reviews, 2006, **38**, Sup 1, 14. Lin, Y. et al. Drug Metabolism and Disposition, 2001, **29**, 368-374.