Application of physiologically based pharmacokinetic modelling to predict the pharmacokinetics of zidovudine and its interaction with fluconazole using recombinant UGT2B7 CL_{int} inputs and UGT tissue scalars

BACKGROUND

- Intrinsic clearance (CL_{int}) data from recombinantly expressed UGT enzymes can be extrapolated to in vivo clearance (CL) values using appropriate tissues scalars (similar to relative activity factors).
- Robust scalars are also required for accurate prediction of the fractional contribution of an enzyme to the elimination of a drug (fm) which is critical for the prediction of DDIs.
- The antiretroviral drug, zidovudine, is a probe substrate for UGT2B7 with 65-75% of a dose excreted in the urine as the glucuronide. Following coadministration of the UGT2B7 inhibitor fluconazole, a 1.75-fold increase in the exposure of zidovudine was observed (Sahai et al., 1994).

AIMS

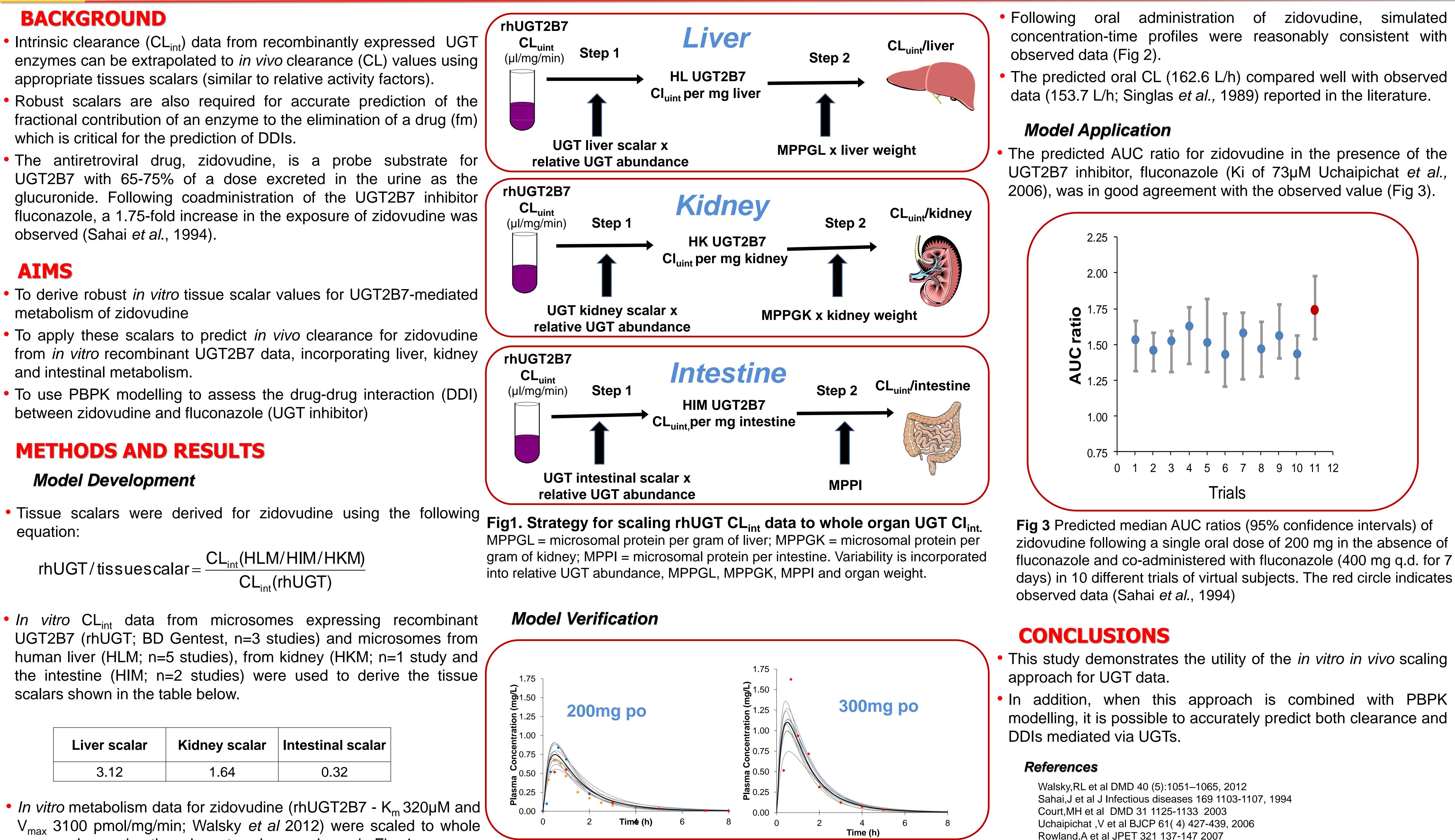
- To derive robust in vitro tissue scalar values for UGT2B7-mediated metabolism of zidovudine
- To apply these scalars to predict in vivo clearance for zidovudine from *in vitro* recombinant UGT2B7 data, incorporating liver, kidney and intestinal metabolism.
- To use PBPK modelling to assess the drug-drug interaction (DDI) between zidovudine and fluconazole (UGT inhibitor)

METHODS AND RESULTS

Model Development

equation:

$$rhUGT/tissuescalar = \frac{CL_{int}(HLM/HIM/HKM)}{CL_{int}(rhUGT)}$$


 In vitro CL_{int} data from microsomes expressing recombinant UGT2B7 (rhUGT; BD Gentest, n=3 studies) and microsomes from human liver (HLM; n=5 studies), from kidney (HKM; n=1 study and the intestine (HIM; n=2 studies) were used to derive the tissue scalars shown in the table below.

Liver scalar	Kidney scalar	Intestinal scalar
3.12	1.64	0.32

- In vitro metabolism data for zidovudine (rhUGT2B7 K_m 320µM and V_{max} 3100 pmol/mg/min; Walsky et al 2012) were scaled to whole organ values using the relevant scalars as shown in Fig. 1.
- These data were then combined with physicochemical data in a minimal PBPK model implemented in the Simcyp Population-based Simulator (V12) (Jamei *et al.*, 2009).

H.K Crewe, Z.E. Barter, H.E. Humphries, L.M. Almond, K Rowland-Yeo

Simcyp Ltd (a Certara company), Blades Enterprise Centre, Sheffield, S2 4SU

Fig 2. Concentration time profiles of simulated (lines) and observed (circles) data after oral administration of zidovudine (Singlas et al., 1989; Anderson *et al.*, 2000)

Fig 3 Predicted median AUC ratios (95% confidence intervals) of zidovudine following a single oral dose of 200 mg in the absence of fluconazole and co-administered with fluconazole (400 mg q.d. for 7 days) in 10 different trials of virtual subjects. The red circle indicates

Rowland, A et al JPET 321 137-147 2007 Gibson, CR et al Xenobiotica 43 (12) 2012 Zhang et al DMD 39 456-464 2011 Jamei, M et al Drug Metab. Pharmacokinet. 24 (1): 53–75 Singlas et al Eur J Clin Pharmacol 36: 639-640, 1989 Anderson et al Pharmacotherapy 20(8): 917-922 2000

zidovudine, simulated