APPLICATION OF PBPK MODELING TO ASSESS THE VICTIM DDI POTENTIAL OF PACLITAXEL IN ONCOLOGY COMBINATION THERAPIES

CERTARA

Introduction

- Paclitaxel is the backbone of standard chemotherapeutic regimens used in a number of malignancies. It is cleared through CYP2C8, CYP3A4 and P-gp mediated pathways.
- Newly developed oncolytic agents, including tyrosine kinase inhibitors are often shown to be CYP3A4 and P-gp inhibitors.
- Therefore, it is of interest to assess a priori the combination of new agents and paclitaxel with respect to pharmacokinetic (PK) interactions.

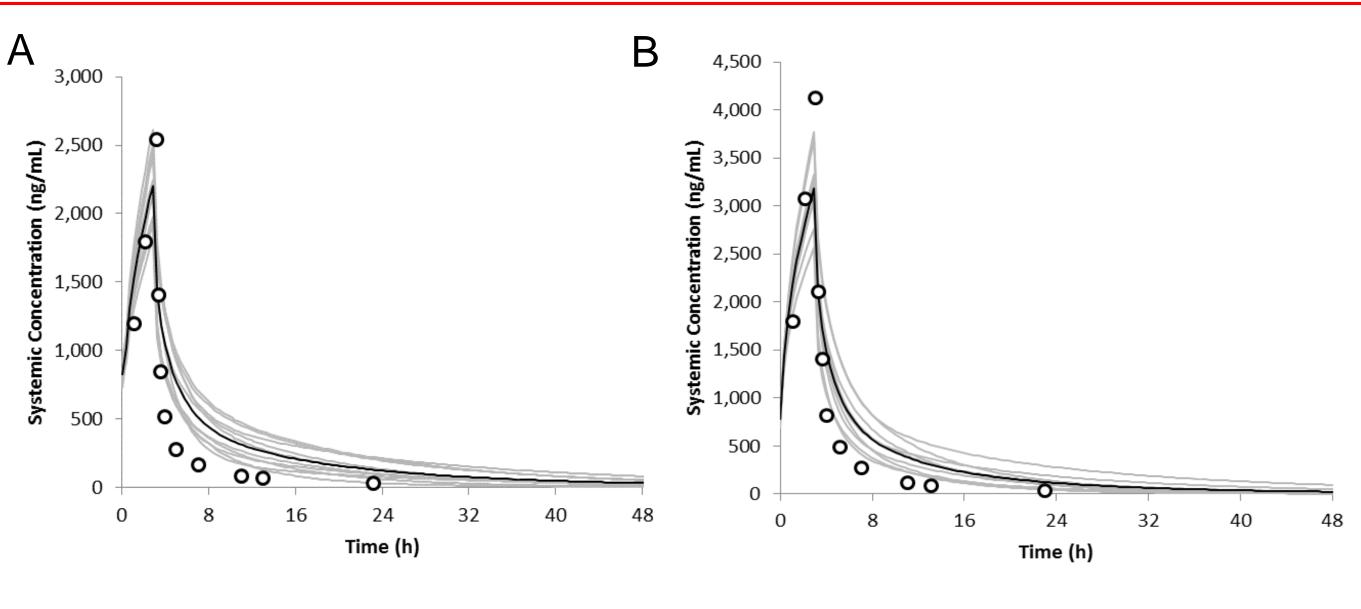
Aims

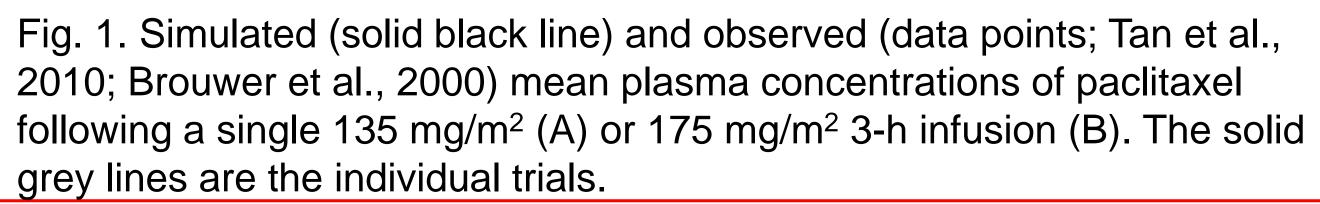
• The aim of this study was to develop a PBPK model for intravenously administered paclitaxel to estimate the DDI potential as a victim.

Methods

- Non-linear pharmacokinetics in the dose range of 60-200 mg/m² has been reported, and this apparent non-linearity has been largely attributed to formulation effects (i.e., cremophor).
- For model qualification purposes, two paclitaxel models were developed: the 135 mg/m² model and the 175 mg/m² model.
- In vitro data (Wang et al., Drug Metab Dispos 2014) were used initially to assign the fraction metabolized (fm) by CYP2C8 and CYP3A4 as 73% and 9%, respectively.
- To verify fm_{CYP2C8}, the pharmacogenetic effect of CYP2C8 on paclitaxel PK (175 mg/m²) was assessed (Bergmann Pharmacogenomics 2011). The reported 58% reduction in CYP2C8*3 variant intrinsic activity determined in vitro was incorporated in the model.
- To verify fm_{CYP3A4} , DDI data were utilized to investigate the effect of

a) the CYP3A4 and P-gp inhibitor R-verapamil (225 mg every 4 h for total of 12 doses) on paclitaxel (200 mg/m² 3-h infusion on day 2) (Berg J Clin Oncol 1995); R-verapamil model incorporated in vitro data on CYP3A4 inactivation (K_I:2.21 μ M and k_{inact}:2.0 hr⁻¹), CYP2C8 inactivation (K_I:17.5 μ M and k_{inact}: 3.9 hr⁻¹) and hepatic P-gp inhibition (K_i: 0.1 μ M). b) the CYP3A4 inhibitor pazopanib (800 mg QD for 21 days) on paclitaxel (135-175 mg/m² 3-h infusion on day 21) (Kendra Mol Cancer Ther 2015). The pazopanib model incorporated in vitro data on CYP3A4 inactivation (K_I:2.9 µM and k_{inact}:1.26 hr⁻ ¹ (Kenney et al., *Pharm Res* 2012)


Alice Ban Ke and Karen Rowland-Yeo Simcyp Limited (a Certara company), Sheffield, UK Alice.Ke@certara.com


Table 1. Initial input parameter values used to simulate the kinetics of paclitaxel 175 mg/m²

-		
Parameter Name	Value	Method/So
Phys Chem and Blood Bind	ing	
MW (g/mol)	853.9	Product label
logP	3.54	Predicted, Che
Compound type	Neutral	Reported (Wa
B/P	0.69	Reported (Spa dependent due
fu _p	0.054	Time-average plasma sampl
Main plasma binding protein	Albumin	Reported (Wa
Distribution		
Model	Full PBPK	
Vss – predicted (L/kg)	1.3	Global Kp sca the observed `
Elimination		
CL _{IV} (L/h)	23.6 (40%)	Weighted mea data obtained administered a
Enzyme kinetics – CYP2C8 CLint (µl/min/pmol)	5.0	Retrograde ca CL (Wang et a
Enzyme kinetics – CYP3A4 CLint (µl/min/pmol)	0.1	Retrograde ca CL (Wang et a
Biliary CL (µl/min/millions)	2.72	Assign 5% of data (Bristol-M
CL _R (L/h)	3.4	Estimated fro 1995)

Results

- Two paclitaxel models which allowed recovery of the observed paclitaxel non-linear pharmacokinetics following 135 and 175 mg/m² given as a 3-h infusion were developed.
- The paclitaxel base model predicted 15% reduction in paclitaxel CL in CYP2C8 *1/*3 individuals, which was comparable to the observed reduction of 11.4%.

Source

- (Bristol-Myers-Squibb, 2015) emaxon
- attanachai et al., 2011)
- parreboom et al., 1999), dose-
- le to formulation effect
- ed value determined in patient
- bles (Brouwer et al., 2000)
- attanachai et al., 2011)

alar of 0.155 was applied to match Vss (Brouwer et al., 2000)

- an literature value using clinical PK ed following 175 mg/m² paclitaxel as a 3-h infusion (n=99 subjects) calculation- assign 85% of hepatic al., 2014)
- calculation- assign 10% of hepatic al., 2014)
- hepatic CL based on mass balance Myers-Squibb, 2015)
- om literature data (Walle et al.

Results Cont'

- data (Fig. 2A).
- AUCR of 1.35 (Goh et al., 2010).

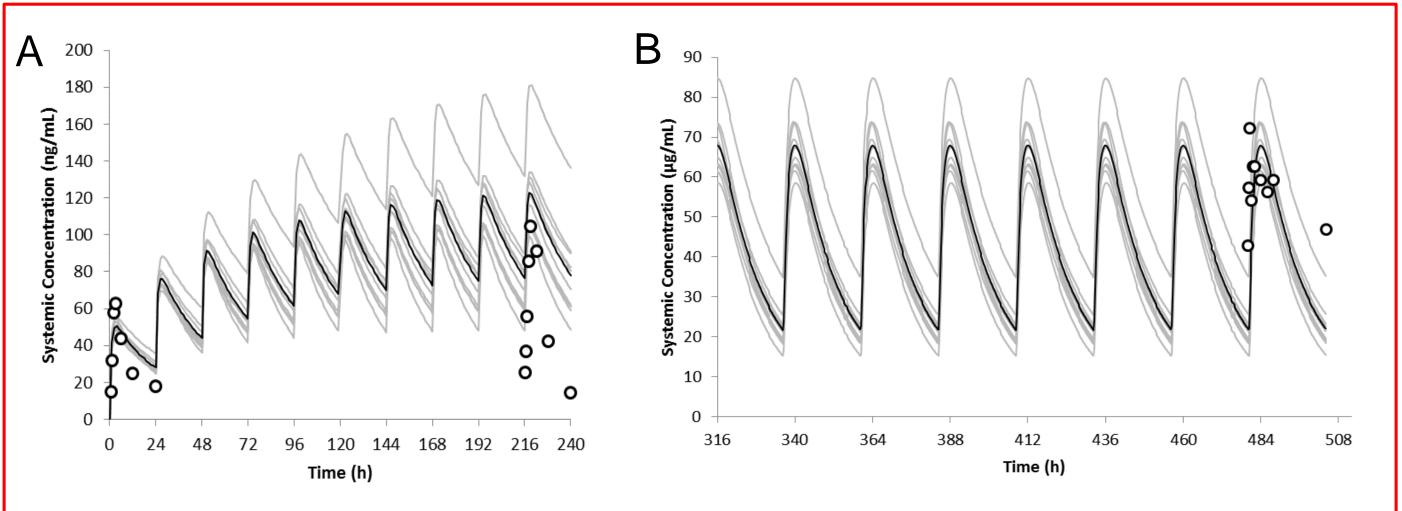


Fig. 2. A) Simulated (solid black line) and observed (data points; Lemma et al., 2006) mean plasma concentrations of R-verapamil on day 1 and day 10 following daily oral dosing of 120 mg R-verapamil to healthy volunteers. B) Simulated (solid black line) and observed (data points; Plummer et al., 2013) mean plasma concentrations of pazopanib on day 21 following daily oral dosing of 800 mg pazopanib to oncology patients.

• DDI predictions

a) the predicted paclitaxel (200 mg/m²) AUCR due to Rverapamil treatment was 1.61, compared to the observed paclitaxel AUC ratio of 1.76.

b) the predicted paclitaxel (175 mg/m²) AUCR due to pazopanib treatment was 1.20 (trial range 1.16-1.27), compared to the observed paclitaxel AUCR of 1.26-1.41.

Conclusions

PBPK modeling using robust qualified models allows a priori prediction of DDIs involving complex combination therapies which are often utilized in an oncology setting.

References

Bristol-Myers-Squibb (2015) Taxol product label. Bergmann TK et al. (2011) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 11:113-120.

Berg SL et al. (1995) Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J Clin Oncol 13:2039-2042. Kendra KL et al. (2015) A multicenter phase I study of pazopanib in combination with paclitaxel in first-line treatment of patients with advanced solid tumors. Mol Cancer Ther 14:461-469.

• The R-verapamil model was qualified against observed PK

• The "fit-for-purpose" pazopanib model was qualified against observed PK data (Fig.2B). The CYP3A4 k_{inact} was optimized from 1.26 h⁻¹ to 0.22 hr⁻¹ to recover the observed midazolam

between paclitaxel and Rverapamil/pazopanib indicated that fm_{CYP3A4} and fm_{CYP2C8} are likely to be 30% and 50%, respectively, and the overall contribution of P-gp (hepatic+renal) is approximately 20%.