Application of Global Sensitivity Analysis Methods to Determine the most Influential Parameters of a Minimal PBPK Model of Quinidine

Dan Liu, Linzhong Li, Masoud Jamei

Simcyp Limited (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK

CERTARA

Simcyp

The PAGE 2017 meeting, Budapest, Hungary I-03

Background

Sensitivity analysis is used to evaluate the effect of model parameters on its outputs in various areas including systems biology and systems pharmacology [1-2]. We present an application of Global Sensitivity Analysis (GSA) methods to a minimal-Physiologically-Based PK (mPBPK) model of Quinidine (Fig. 1), a model drug, to identify the most influential model parameters affecting the PK properties of interest.

- Elementary effect GSA method (Morris screening) and variance-based GSA methods (extended Fourier Amplitude Sensitivity Test - eFAST, Sobol method, and extended Sobol method - exSobol) [2-4] were used to study the influence of model parameters (Table 1) on the simulated PK properties, i.e. C_{max}, T_{max}, and AUC, of a mPBPK model [5] of Quinidine given orally.
- Morris screening, eFAST, and Sobol are GSA methods proposed for a model with non-correlated variables; exSobol method [4] is designed to handle a model with correlated variables. In exSobol analysis, moderate correlations are assumed between BW and V_{ss} (ρ =0.5), and Q_{HA} and Q_{pv} (ρ =0.6).
- The sensitivity indices from Morris screening were mean (μ or μ^*), standard variance (σ), and global index ($\sqrt[2]{\mu^{*2} + \sigma^2}$) of estimated elementary effects [6]. For variance-based GSA methods, two sensitivity indices were calculated, i.e. first-order sensitivity index (S_i) evaluating the effect of each parameter without considering its interaction with others, and total sensitivity index (S_{TI}) assessing the impact of parameters considering their potential interactions.
- The performance of GSA methods was also evaluated on non-linear and non-monotonic Ishigami-Homma function by comparing the estimated sensitivity indices/importance with analytical solutions.
- In the mPBPK model of Quinidine, GSA sensitivity indices (Table 2) suggest that 1) Dose, BW, V_{ss}, BP, fu, Fg, and fa, are the parameters to influence C_{max}; 2) k_a and f_u are the key influential parameters for T_{max}; 3) fu, Dose, CL_{uint}, Fg, f_a, and BP, have a high impact on AUC_{24h} (Fig. 2).
- Qualitative Morris screening can be as sufficient as quantitative Sobol and eFAST methods to identify the importance of model parameters when comparing with analytical solutions for Ishigami-Homma function.

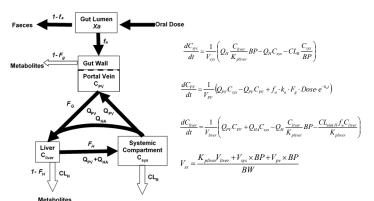


Figure 1, a scheme of mPBPK model

Table 1, parameter ranges for Quinidine											
Parameters	Abbreviation	Unit	Min^	Max^							
Dose	Dose	mg	50	500							
Fraction of absorption	f _a	n/a	0.41	1							
Absorption rate	k _a	1/h	1.23	4.76							
Gut availability	Fg	n/a	0.39	1							
Blood to plasma concentration ratio	BP	n/a	0.55	1.22							
Fraction of unbound drug in plasma	f _u	n/a	0.08	1							
Liver tissue to plasma partition coefficient	K _{pliver}	n/a	1.77	6.84							
Hepatic intrinsic clearance	CL _{uintH}	L/h	40.27	155.22							
Hepatic arterial blood flow	Q _{HA}	L/h	10.34	39.87							
Portal vein blood flow	Q _{PV}	L/h	30.24	116.54							
Body weight	BW	kg	33.3	128.16							
Volume of portal vein	V _{pv}	L	0.03	0.13							
Volume of liver	V _{liver}	L	0.66	2.55							
Distribution volume in plasma	V _{ss}	L/kg	0.82	3.17							
Renal clearance rate with respect to plasma	CL _R	L/h	0.80	3.10							

[^]parameter ranges apart from Dose were estimated using 95% CI of default parameters in Simcyp simulator V16 with 30% CV. 20% CV was presumed for BP. Max or min values for f_u , F_g , and f_u were adjust to [0,1], if exceed.

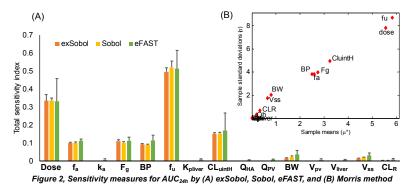


Table 2, Ranked influential parameters for Quinidine*

			_,					parameters for				
		Dose	fa	ka	\mathbf{F}_{g}	BP	fu	K _{pliver} CL _{uintH} Q _H	A Q _{PV}	BW V _p	_v V _{liver} V _{ss} (CL _R
C _{max}	Morris	1	5	9	7	4	6	8	10	3	2	
	eFAST	1	6	10	7	4	5	8	9	3	2	
	Sobol	1	7	9	5	4	6	8	10	2	3	
	exSobo	1	7	9	5	4	6	8	10	2	3	
T _{max}	Morris			1			2	5	6	3	4	
	eFAST			1			2	5	6	4	3	
	Sobol			1			2	5	6	4	3	
	exSobo			1			2	5	6	4	3	
AUC _{24h}	Morris	2	5		4	6	1	3		7	8	
	eFAST	2	6		4	5	1	3		8	7	
	Sobol	2	5		4	6	1	3		7	8	
	exSobo	2	5		4	6	1	3		7	8	

*Morris global index was used to rank the input factors, while total sensitivity index were adopted for other methods.

- Knowing the physicochemical and plasma/blood binding properties of Quinidine the determined ranking is as expected.
- In this case, the qualitative Morris screening method was as informative of the quantitative methods, e.g. eFAST, Sobol and exSobol.
- 1. Zi, 2011. IET systems biology, 5(6), 336-346.
- 2. McNally et al., 2011. Frontiers in pharmacology, 2, 31.
- 3. Saltelli et al. 2008. The Primer, Wiley
- 4. Kucherenko et a. 2012. Comput. Phys. Commun, 183, 937–946.
- 5. Yeo et al., 2010. Eur. J. Pharm. Sci, 39(5), 298-309.
- 6. Beaudouin et al. 2015. PloS one 10(5), e0125841.