A MODEL RELATING OVERALL SURVIVAL RELATED TO TUMOR GROWTH INHIBITION IN RENAL CELL CARCINOMA PATIENTS TREATED WITH SUNITINIB, AXITINIB OR TEMSIROLIMUS Laurent Claret¹, Brett Houk², Francois Mercier¹, Peter A Milligan³, Rene Bruno¹

OBJECTIVE

Tumor growth inhibition (TGI) metrics estimated with TGI models have been shown to be predictive of overall survival (OS) in a variety of tumor types¹ The objectives of this work were

- 1) to leverage historical data and assess the link between TGI and OS
- to identify TGI thresholds that are predictive of 2) expected OS benefit and could be used as targets to support early decisions at end of Phase II, or at an interim point of a Phase III clinical trial.

METHODS

Table 1: Characteristics of the studies

Study	Phase	Line	N*	N _{eval} **	Treatment groups
Temsirolimus 1098	Ш	1st, poor prognosis	501	496	Temsirolimus, interferon, temsirolimus+interferon
Sunitinib 1006	Ш	2 nd , refract ²	106	105	Sunitinib 50 mg qd 4/2
Sunitinib 1034	Ш	1 st	725	709	Interferon, Sunitinib 50 mg qd 4/2
Sunitinib 1065	II	1 st	289	267	Sunitinib 50 mg qd 4/2, and 37.5 mg qd cont
Sunitinib 1072	Ш	1 st and 2 nd	51	51	Sunitinib 50 mg qd
Sunitinib 1110	NA	Long term extension	118	113	Sunitinib long term safety and tolerability
Axitinib 1012	Ш	2 nd refract ²	52	48	Axitinib 5 mg bid
Axitinib 1023	Ш	2 nd , refract ¹	62	50	Axitinib 5 mg bid
Axitinib 1032 (AXIS)	Ш	2 nd	714	651	Axitinib 5 mg bid, Sorafenib 400 mg bid
Axitinib 1035	II	2 nd , refract ²	64	62	Axitinib 5 mg bid
TOTAL			2628	2552 (97.1%)	

*N: patients with tumor size data

**Neval: Patients "evaluable" with at least one post-baseline tumor size measurement in addition t

¹ sorafenib refractory

cytokine refractory

REFERENCES

- 1 Bruno R. et al. Clin Pharmacol Ther. 2014 Apr;95(4):386-93.
- 2 Claret L. et al. JCO, 2013 Dec 1;31(34):4374-5.

model² :

 $Y_{ij} = \tilde{Y}_{ij} + \varepsilon_{ij}$

 $\theta_i = \theta \cdot e^{\eta_i}, \ \eta_i \sim$

weel

TTG_i

- - Information Criteria (AIC)

 - stepwise elimination: p<0.01.
- times for the patients, as in the original studies.
- Ò.
- end of phase II decisions or interim analysis of phase III.

¹Pharsight, a CertaraTM company, Marseilles, France; ²Pfizer Clinical Pharmacology, La Jolla, CA, USA, ³Pfizer Pharmacometrics, Sandwich, UK

METHODS

• TGI data (sum of longest diameters) was adequately described using the

$$before treatment$$

$$i_{j} - \frac{KD_{i}}{\lambda_{i}} \cdot \left(1 - e^{-\lambda_{i} \cdot t_{ij}}\right)$$
afterward

$$N(0,\omega^2), \varepsilon_{ii} \sim N(0,\sigma^2),$$

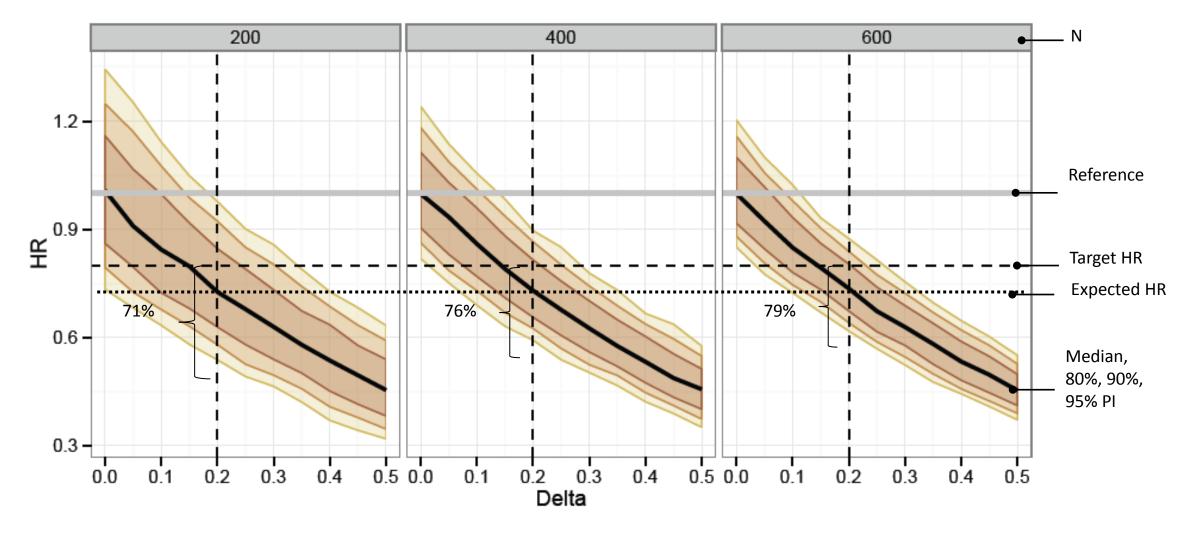
• The purpose of this model is to derive patient-level TGI metrics¹ (Early tumor shrinkage (ETS) at week 8, 10, 12, or time to growth (TTG))

$$K x ETS_{i} = \frac{Y_{Weekx,i}}{Y_{0i}}$$
$$K = \frac{\log(KD_{i}) - \log(KL_{i})}{2}$$

• OS parametric model was built by backward stepwise elimination • select the best distribution describing OS data by Akaike

> • "full" model including significant covariates from univariate analysis (p<0.05 per the log-likelihood ratio test).

• The model simulation performances were evaluated using posterior predictive checks (PPC). OS distribution and hazard ratios (HR) were simulated 1000


• Simulations of the OS model were performed to assess the relationship between the expected effect size in OS (HR) of an investigational treatment and the difference (δ) i.e. the effect size in TGI metric (e.g. week 8 ETS). Multiple replications (n=1000) of virtual Phase III studies comparing an investigational treatment to standard of care were simulated. The power of the Phase III studies was also calculated conditional on the difference in TGI,

• This setting would mimic the calculation of expected HR that could be done as soon as tumor size data are available to estimate TGI, and support interim or

able 2: Parameter estimates of lognormal distribution OS model in days						
Parameter	Estimate (SE)	p-value				
(Intercept)	8.07 (0.270)	<0.001				
Week 8 ETS	-1.99 (0.135)	<0.001				
Hemoglobin (g/L)	0.133 (0.111)	<0.001				
ECOG=1	-0.400 (0. 048)	<0.001				
ECOG=(2, 3)	-0.163 (0.077)	0.033				
Corrected calcium (mg/dL)	-0.104 (0.019)	<0.001				
Log(# metastases)	-0.209 (0.032)	<0.001				
Time from diagnosis (days)	8.0E-5 (1.7E-5)	<0.001				
Baseline LDH (U/L)	-3.7E-4 (9.2E-5)	<0.001				
Lung metastases (yes)	-0.138 (0.046)	0.002				
Log(scale)	-0.107 (0.020)	<0.001				
: standard error, p: wald test (χ^2)						

SE: standard error, p: wald test (χ^2)

+ sign favorable; - sign not favorable

- clinical studies in mRCC
- treatments.

RESULTS

Figure 1: Predictive check of week 8 ETS OS model by tertiles of week 8 ETS (large light grey, medium grey and low dark grey)

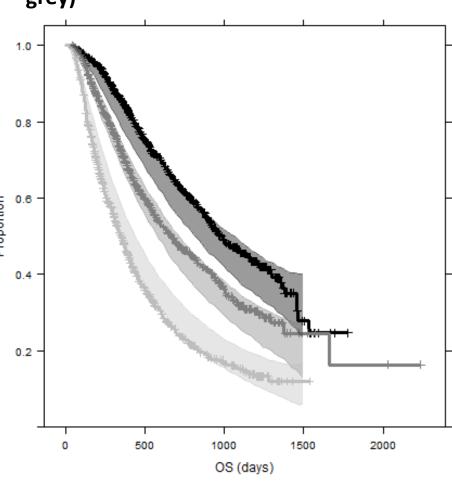


Figure 2: Predictive check of the sunitinib to INF- α HR in first-line sunitinib study (1034)

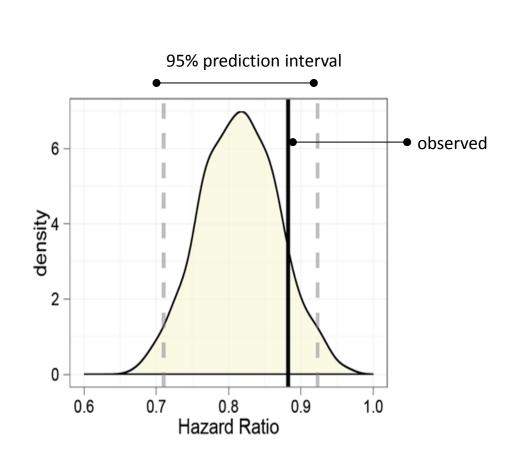
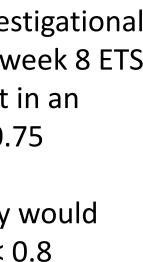
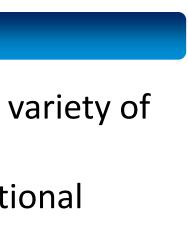


Figure 3: Predictive distribution of HR comparing an investigational treatment to sunitinib in a 200, 400 and 600 patient study (N/2 per arm) as a function of difference in tumor growth inhibition (delta in week 8 ETS)


- According to the simulations, an investigational treatment that would induce a 20% week 8 ETS difference from reference may result in an improved OS with a expected HR ~ 0.75
- A 300 patient per arm Phase III study would have a 79% probability to show HR < 0.8


CONCLUSION

Week 8 ETS, an early measure of tumor growth inhibition, had satisfactory performance to predict OS in a variety of

• The OS model was used to simulate clinically relevant ETS targets for future Phase 2 studies with investigational

