A Mechanistic Model for the Prediction of Human Equilibrium Blood-to-Plasma Concentration Ratio (B/P): Basic and Neutral Drugs.

D. Turner^{1*}, H. Musther¹, M. Jamei¹, A. Rostami Hodjegan^{1,2}

¹Simcyp Limited, Sheffield, UK; ²University of Manchester, Manchester, UK

*d.turner@simcyp.com

MANCHESTER

The University of Manchester

Introduction

The equilibrium Blood-to-Plasma concentration ratio (B/P) is a widely used parameter for predicting hepatic clearance (CL_b) and equilibrium tissue-to-unboundplasma partition coefficients (Kp,),1.2 When lacking experimental values it is often assumed that B/P is 1 (neutrals and bases) or 0.55 (acids and zwitterions) while it has been shown that the use of measured rather than such "rule-of-thumb" B/P values can significantly alter predicted CL_b³ or Kp_i,¹ Previously reported B/P prediction models have either been difficult for third parties to implement and flawed⁴ or the extent of the correlations obtained were quite poor and test set predictions not undertaken³. Thus there is a place for alternative tools for the prediction of B/P.

Purpose

The first objective is to attempt to improve upon existing B/P prediction models while using a minimal set of widely available descriptors so as to facilitate model use at early stages of drug discovery. A second, and constraint on the first, aim is to provide a tool that can be used to aid in the identification of compounds whose Kp,'s are likely to be poorly predicted by the widely used Rodgers and Rowland (R&R)¹ methods on the assumption that outliers to the B/P model (identified once measured B/P is obtained) may also be outliers to the R&R method. The latter methods require as input logPawa pKa(s), fu and, for cations, B/P itself where acidic phospholipid (AP) binding constants (Ka_{AP}) are frequently back-calculated from B/P and then applied to predict the extent of AP binding in all other tissues¹. Thus, with the second objective in mind, it makes sense to use the same properties for building B/P prediction models.

Methods

Experimental human B/P, fu, pKa and logPort values were collected from in-house databases (including values provided by Simcyp Consortium⁵ members) and the literature. The B/P values were transformed³ to erythrocyte-to-plasma-unbound concentration ratios ($K_{e,u}$) - haematocrit (ht) was assumed to be 0.45 if not reported. The dataset was divided into two "training" subsets viz 40 strongly (≥ 95%) ionised bases and 25 predominantly uncharged (≤ 5% ionised) bases or fully neutral drugs (pH 7.4). For each training set separately logK_{e,u} was correlated with logP_{o:w} so as to attempt to separate the behaviour of neutral and cationic species⁶. Linear fitting methods were used. Outliers were identified on the basis of 95% confidence bands. With the second objective (above) in mind it makes sense to exclude outliers to the model.

The $K_{e,u}$ of 39 drugs of intermediate ionisation extent was predicted by combining the appropriate predicted strong base $K_{e,\mu}$ with that predicted for the uncharged species, respectively weighted by the fraction ionised (fionised) or fraction neutral (fineutral) at physiological pH.

$$\log K_{e,u} = \log(f_{ionised} \cdot K_{e,u,basic} + f_{neutral} \cdot K_{e,u,neutral})$$

Model fit and prediction were quantified using RMSE, afe (average fold error) and aafe (absolute afe) defined as follows:

 $afe = 10^{\frac{1}{n} \sum_{i=1}^{n} \log\left(\frac{predicted_i}{experimental_i}\right)}$ $RMSE = \left| \frac{1}{n} \cdot \sum_{i=1}^{n} (predicted_i - experimental_i) \right|$

where predicted here refers to either a truly predicted value (test set) or a fitted value (training set). For aafe calculation the absolute values of log(predicted/experimental) are used.

Results & Discussion

The training set models (bases: $r^2 = 0.63$, *aafe* = 1.23, *RMSE* = 0.29; neutrals: see Fig 1) have r^2 values somewhat higher than those reported previously3 (0.38 and 0.44 respectively albeit based on a different but overlapping dataset). Test set B/P predictions (Fig. 2) showed improved performance in comparison both to Uchimura et al.3 (their reported equations applied to our dataset) and where the rules-of-thumb are applied (*i.e.*, B/P = 1).

Itraconazole (ITZ) (logP_{o:w} = 5.7), ritonavir (RTV) (logP_{o:w} = 4.3) and, to a lesser extent, triazolam (TRZ) (logP_{ow} = 2.4) are major outliers to the general trend for neutral drugs (Fig. 1) – Vss for these compounds are respectively 32, 37 and 3-fold over-predicted by the R&R model. This overprediction might be anticipated from Fig 1; i.e., these compounds lie very much below the trend line. Given the extent of the deviation from trend it is unlikely that error/uncertainty in model inputs (logP_{aw} etc) is the cause. Thus it seems likely there is an underlying mechanistic explanation for this deviation.

Conclusion

The strong correlations obtained between logK_{e,u} with logP_{o,w} are in contrast to the poorer correlations with logD_{o,w} (pH 7.4) previously reported.³ This may be the consequence of the clear separation of drugs according to the extent of ionisation. The approach taken is supported by the excellent predictive performance with an independent test set. The models are based upon widely available physicochemical parameters (log Pown pKa, fu) and are thus accessible to a wide range of users. The models are to be extended to handle acids and zwitterions and will be updated regularly as further reliable data become available. The model can be used to help assess confidence in mechanistic Kp_{μ} and Vss predictions.

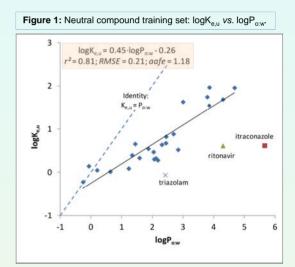
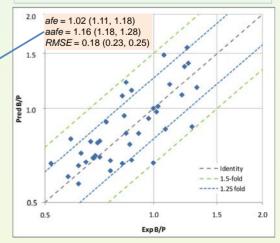



Figure 2: Predicted vs. experimental B/P for an independent test set of 39 basic compounds of intermediate ionisation state at physiological pH (bracketed statistical values refer respectively to predictions made using the model of Uchimura *et al.*³ and where B/P = 1 for all compounds).

References: 1. Rodgers 2007 JPharmSci 24:918; 2. Poulin 2011 ToxicolApplPharmacol 250:194; 3. Uchimura 2010 BiopharmDrugDisp 31:286; 4. Paixoa 2009 EurJPharmSci 36:544; 5. www.simcyp.com; 6. Turner 2006 Poster presented at 9th European ISSX Meeting, Manchester, UK