
Results 
Fixed Effects 
Figures 2 and 3 show the empirical cdfs (blue) of the 1000 CVG statistics for the 
fixed effects tvlogV and tvlogKe, respectively, against the ideal linear behavior (red)   

          Figure 2 - tvlogV Coverage                    Figure 3 - tvlogKe Coverage  

 

 

 

 
 

 

The random effect coverage is does not significantly deviate from ideal linear 
behavior.  Thus the bootstrap distributions appear to be unbiased and effective for 
purposes of identifying reliable confidence limits with the proper coverage levels.  
For example, an upper 80% confidence limit for tvlogV should cover the true value 
tvlogV=log(0.6)  in approximately 800 of the 1000 data sets – the actual observed 
number was 804 data sets. 

Random Effects 

  Figure 4 – Omega(V,V) Coverage          Figure 5 – Omega(Ke,Ke) Coverage 

 

 

 

 

 

 

 
The observed  CVG cdf’s (blue) in both cases lies significantly above the ideal 
linear CVG cdf  (red) over the entire range. This means that in general for this 
model, the bootstrap distribution is shifted left  - i.e., the bootstrap estimates are 
biased low, and confidence levels are somewhat imprecise with lower actual 
coverage than the confidence level specifies.   For example, an upper 80% 
confidence limit for Omega(Ke,Ke) in Figure 5 should in fact cover the true 
Omege(Ke,Ke) value 0.3 in 80%  (800 of 1000) of the data sets – the actual 
coverage is 703 data sets (70.3%).  The equivalent observed coverage for an upper 
80% confidence limit on Omega(V,V) in Figure 4 is only 594 data sets out of 1000 
(59.4%). 

Discussion 
A primary advantage of the posterior-bootstrapping methodology, at least in simple 
cases, is its extraordinary speed.  The total computational time to evaluate 10000 
bootstrap samples for a single data set was basically negligible ( on the order of 1 
sec).  While we have not shown it here, the method is readily extensible to residual 
error parameters.  The method can also be extended to handle fixed effects 
parameters (there are none in this example) that are not paired with random effects 
and hence are not directly estimable from just a knowledge of the basic statistics of 
the posterior distributions.  However, this will raise the computational cost 
considerably, but it will still likely be well below that of conventional bootstrap 
methods. 

The quality of the bootstrap coverage, at least for the fixed effects, is remarkably 
good over the entire cdf range.  The quality of the coverage for random effects is 
considerably lower,  but we believe may still be reasonable, for example, for the 
purposes of computing approximate standard errors.  We are in the process of 
making comparisons with conventional bootstrap results in the random effects 
case, but as yet do not have definitive results. 

It must be emphasized that this is a pilot study, with just a single very simple 
example model, so we cannot yet generalize to how well the method will perform 
on other models.  However, the results, particularly in the case of fixed effects, 
suggest that at least for some purposes the method may be a reasonable and 
much faster alternative than the conventional bootstrap.  
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Overview and Objectives 
In the most usual form of NLME bootstrapping for parameter 
uncertainty estimation, each replicate data set is constructed by 
pooling Nsub (= total number of subjects) random selections of 
individual data sets with equal probability 1/Nsub on each 
individual. In effect, the bootstrap replicates are the 
concatenation of Nsub individual data sets from a mixture 
distribution of individual data sets with equal probabilities on 
each set.  An intriguing analogy occurs in the optimal NLME 
estimation solution via EM methods. At least in simple cases 
where all fixed effects are interpretable as structural parameter 
means,  at the optimum (maximum likelihood) solution, the fixed 
effects parameters (thetas) are the means, and the random 
effect parameters (Omega) are the variances/covariances, of 
the mixture distribution of posteriors.  Thus in these simple 
cases knowing the means and covariance matrices for each 
subject’s posterior at the maximum likelihood point is sufficient 
to recover the optimal fixed and random effect values with a 
very fast computation involving just some basic linear algebra.   

This suggests the possibility of a very fast bootstrapping 
procedure.   Rather than assembling new replicate data sets 
and resolving the estimation problem for each one,  simply 
resample the posteriors (means and variance/covariance 
matrices) and compute fixed and random effects from the 
resampled posteriors.  The objective here is to evaluate the 
performance of this procedure on a simple test problem. 

Test Problem and Evaluation Procedure 
1000 simulated data sets were created with Nsub=100 subjects each for a simple 
IV bolus model C(t)=Dose*exp(-Ke*time)/V with additive residual error (standard 
deviation =0.05).  Structural parameters  Ke = exp(tvlogKe+etaKe) and V = 
exp(tvlogV+etaV) were log normally distributed with diagonal Omega where 
Omega(V,V)=0.4, Omega(Ke,Ke)=0.3,. Fixed effects were tvlogV=log(0.6), 
tvlogKe=log(0.2). All subjects had a common single bolus Dose=1 at t=0 and fixed 
sampling times t=[1,2,3,4].  

For each data set, parameters were estimated with the Phoenix NLME QRPEM 
algorithm to obtain posterior means and variance/covariance matrices for each 
subject at optimality.  For each data set, 10000 bootstrap replicates were taken 
from these posteriors and the fixed and random effects parameters computed.  
Figure 1 below shows a histogram of the 10000  bootstrap Omega(Ke,Ke) values 
for a single example data set 

 

 

                               Figure 1 

 

 

 

 

 

 
 

 

For each parameter and data set a coverage statistic CVG was generated as the 
cumulative distribution  function of the true value of the parameter within the 
bootstrap distribution of  that parameter.  In the above example, 8912 out of 
10000 of the Omega(Ke,Ke) values in the bootstrap distribution were below the 
true value Omega(Ke,Ke)=0.3, so the Omega(Ke,Ke) coverage statistic CVG for 
this data set is 0.891.  Note that ideally the coverage statistics should have an 
empirical uniform [0,1] distribution over all 1000  data sets.  In this ideal case,  an 
upper X% confidence limit generated  as the upper X percentile of the bootstrap 
distribution is ‘correct’  in the sense that the observed frequency of the true value 
falling below this limit in the 1000 data sets is approximately X%.  So a 
convenient method of evaluation is to plot the empirical cdf of the 1000 coverage 
statistics  and compare to the ideal linear behavior of the cdf of a uniform[0,1] 
distribution. 
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True Omega(Ke,Ke) = 0.3 
 coverage=Prob(bootstrap 
replicate < 0.3 ) =  0.893
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