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Background

•Antiretroviral therapy (ART) is able to suppress the viral load
to below the detection limit, but it is not able to eradicate the
latent reservoir. The HIV model in [1] was built with an
intention to investigate possible pharmacological strategies
that may be beneficial to reduce or possibly eradicate the
latent reservoir [2].

Figure 1: Diagram of HIV model proposed in [1]. Model states T1 and T ∗
1

respectively denote the uninfected and infected activated CD4+ T cells, and
T2 and T ∗

2 respectively represent uninfected resting CD4+ T cells and latently
infected CD4+ T cells. Model states VI and VNI respectively denote infectious
and non-infectious virus, and E1 and E2 respectively represent activated and
memory HIV-specific CD8+ T cells. PI and RTI denote protease inhibitor and
reverse transcriptase inhibitor, respectively.
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Here ξ1(t) = ε1u(t) and ξ2(t) = ε2u(t), where ε1 and ε2 denotes
the relative effectiveness of reverse transcriptase inhibitor and
protease inhibitor, respectively, and 0 ≤ ε1, ε2 ≤ 1.
• Function u (0 ≤ u(t) ≤ 1) is used to describe treatment interruption
with u(t) = 0 representing fully off and u(t) = 1 be fully on.

...

•A simpler HIV model was considered in [3] for population
analysis using stochastic approximation expectation
maximization (SAEM) algorithm. Specifically, this model does
not incorporate some important features of HIV pathogenesis
and cellular immune response such as HIV-specific CD8+ T
cells and another possible source of latency that is established
through transition of activated CD4+ T cells to a resting state
following infection.

Objective

To apply the quasi-random parametric expectation maximization
(QRPEM) method in Phoenix® NLMETM (Pharsight/Certara) to
this highly nonlinear and multi-scaled HIV dynamic model for
population analysis with clinical data [1]
• consisting of 14 patients followed for varying lengths of time
between 2 and 6 years who all underwent ART and had at
least one treatment interruption;

• including the total CD4+ T-cells and non-static BQL viral
load (due to different assays used in the investigated period).

We do not try to compare the QRPEM estimation with methods
used in other software but rather show the capability of the QR-
PEM in implementing such a complex model with complicated
data.

Methods

To incorporate treatment interruptions, we added treatment as a
time-varying covariate using a linear-interpolation approach.
Challenges
Due to the complexity of the problem, this model cannot be di-
rectly implemented in Phoenix® NLMETM.
•Model states may become unrealistically negative in
numerically solving it due to round-off error caused by
large-scale differences among model states and parameters.

•ODE solvers often failed due to some unrealistic parameter
values obtained during the optimization process.

•A large number of free parameters in this model brings
significant challenges in parameter estimation. For example,
the standard error estimates, if they can be computed at all,
are very large.

Techniques
•To avoid the issue caused by the scale difference, we converted
the model into a log-transformed system by log-transformation
of all model states and parameters.

•To avoid obtaining unrealistic parameter values, we imposed
lower and upper bounds on posthoc parameters. This is
achieved through transformation of constrained parameters to
unconstrained ones. We then modified Mu-models for the
QRPEM estimation.

...

•To alleviate the difficulty caused by the large number of free
parameters, we first performed sensitivity analysis to identify
the parameters to which the model outputs are least sensitive.
Those least sensitive parameters were fixed with values given
in [1] and the rest of the parameters were estimated. Next we
identified the parameters with least inter-individual variability
and fixed them with the values justed estimated and then
re-estimated the remaining parameters.

Results

Through proposed methods, we successfully implemented this
model, and obtained reasonably good model fitting results for
all patients (see Figure 2 for two example patients) and reliable
parameter estimates (with coefficient of variation less than 36%).

Figure 2: Model fitting results for two example patients, where red circles are the
actual observations, and green solid line denotes the predicated model solution.

...

Figure 3 shows visual predicted checks (VPC) for log10(CD4+
T cells) and log10(viral load) obtained using Phoenix® NLMETM

with K-means binning option and 1000 replicates. It suggests
that this model has satisfactory predictive capability. This is
consistent with the conclusion made in [1] where model simula-
tions with parameters estimated using only half of the longitu-
dinal observations agreed with the corresponding ones obtained
using parameters estimated from full longitudinal data.

Figure 3: (left panel): plot of VPC for log10(CD4+ T cells); (right panel): plot
of VPC for log10(viral load). Open circles represent actual observations. The
solid line represents the 50th percentile of the simulated ones, and the dashed
lines represent the 5th and 95th percentiles.

Conclusions and Future Work

•Numerical results demonstrate the capability of the QRPEM
estimation in analyzing a complex dynamic model with
complicated data.

• It is worth noting that the HIV model in [1] can be used in the
case where integrase inhibitors are also given to patients. In
the future, we plan to apply this HIV model to such data set
and continue investigating possible pharmacological strategies
for viral eradication.

•We also plan to investigate a hierarchical HIV disease model
repository as workflow and then use these models to design
adaptive dosing regimens via the Phoenix modeling language
engine.
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