A MECHANISTIC PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL TO PREDICT THE PHARMACOKINETICS OF R/S-OXAZEPAM AFTER ORAL DOSING

Turner, DB¹; Pade, D¹; Jamei, M¹; Neuhoff, S¹ ¹Simcyp Ltd (a Certara company), Sheffield, United Kingdom david.turner@certara.com

Introduction:

R/S-Oxazepam (**OXZ**, **Figure 1**) is a well-known benzodiazepine used to treat anxiety disorders or alcohol withdrawal symptoms. It is primarily metabolised by several UDP-glucuronosyltransferase (UGT) enzymes. OXZ is a moderately soluble (intrinsic solubility 22 μ g/mL), weakly basic drug (pKa 1.5) which may be susceptible to precipitation in the duodenum potentially impacting its rate/extent of absorption.

Objectives:

- Develop a mechanistic PBPK model to predict the PK of OXZ after oral administration of a 15 mg immediate release (IR) dosage form.
- Evaluate the influence of drug-formulation properties: supersaturation ratio (SSR), precipitation rate constant (PRC) and particle size distribution (PSD) on the predicted PK of OXZ using the mechanistic PBPK model.

Methods:

- Simcyp Simulator Version 14 (Sheffield, UK) which incorporates PBPK models of absorption and disposition was used for simulations and sensitivity analysis (SA). The 'MechPeff' model included in the Advanced Dissolution, Absorption and Metabolism (ADAM) model was used to predict effective regional intestinal permeability (x 10⁻⁴ cm/s) as follows: Duodenum: 3.23; Jejunum I: 8.67; Jejunum II: 5.20; Ileum I-IV: 1.5; Colon: 0.88. Simulated plasma concentration time profiles (10 trials x 30 subjects) were compared with clinical data from He *et al.*, 2009 ^[1].
- Trial design specifics and model input parameters are shown in Table 1.

Table 1. Trial design specifics and model input parameters

DADAMETER	VALUE			
FARAMETER	VALUE			
Mol. Wt. (g/mol)	287			
log P _{O/W}	2.37			
pKa (type)	1.5 (basic)			
Blood-to-plasma ratio	1.11			
Plasma fu	0.048			
V _{SS} , predicted (L/kg)	0.53 (Rodgers & Rowland method)			
Solubility @ pH 7.4 (mg/mL)	0.022			
Particle size range (µm)	3 - 25 (arith. mean = 11)			
Regional gut wall permeability (P _{eff,man}) (10 ⁻⁴ cm/s)	Predicted using 'MechPeff'			
Fraction unbound in gut enterocyte	0.034 (Prediction model in Simcyp v14)		
Renal clearance (L/h)	0.38			
CLint _{UGT2B15} (S) (µL/min/mg protein)	3.67	Intrinsic Clearance (CL int)		
CLint _{UGT2B7} (S) (µL/min/mg protein)	0.034	obtained using the retrograde		
CLint _{UGT2B7} (R) (µL/min/mg protein)	0.084	metabolic and renal clearance values ^[2-3] .		
CLint _{UGT1A9} (R) (µL/min/mg protein)	0.428			
Trial Design	Healthy Subjec	y Male Volunteers; 10 Trials x 30 ts; Age 18-45 years ^[1]		
Formulation	IR (1)			
Trial Duration (h)	48			
Fluid with dose	250 mL	water ^[1]		
Fasted / Fed Status	Fasted gastric	Gut Physiology (pH, bile salts, emptying, basal fluid volumes) [4]		

- To evaluate the influence of the drug-formulation properties (SSR and PRC) on the predicted PK of OXZ, SA was performed within the following ranges for the respective parameters: SSR: 1-20 with PRC: 4 or 0.01.
- OXZ simulations were also run with monodispersed particle size of 11µm to evaluate the need to model polydispersity.

Table 2. PK parameters for an IR formulation of OXZ

OXZ Formulation	T _{max} (h)	C _{max} (ng/mL)	AUC _{o-t} (ng.h/mL)	
Observed (Polydispersed 3-25 µm; IR)	2.16	179	1401	
Predicted (Polydispersed 3-25 μ m; IR)	1.65	186 (174-195)	1306 (1049-1503)	
Predicted (Monodispersed 11 µm; IR)	1.55	192 (180-203)	1276 (1031-1471)	

Results: Predicted OXZ plasma concentration time profiles for the polydispersed IR formulation were in good agreement with observed profiles (**Table 2 & Fig. 2**). Simulations also indicated that changing the formulation model from a polydispersed (3-25 μ m) to a monodispersed PSD (11 μ m) did not significantly affect the predicted concentration time profiles (assessed via T_{max}, C_{max} & AUC). SA on OXZ parameters SSR and PRC indicated that the PK parameters C_{max} and AUC were not sensitive to variation in magnitude of these parameters (**Figs. 3 & 4**).

Conclusions: The PBPK model successfully predicted the plasma concentrationtime profile of OXZ IR 15 mg formulation with a polydispersed PSD. Simulations also indicate that, although OXZ is sparingly soluble, a change in the formulation from a polydispersed PSD to a monodispersed particle size does not significantly affect the plasma PK profile of OXZ. At least for this dose of OXZ the PK parameters C_{max} and AUC are not sensitive variations in the supersaturation and precipitation rate.

References:

[1] He et al., Br. J. Clin. Pharmacol. (2009) 68:721–730;
[2] Sonne et al., (1988) Eur. J. Clin. Pharmacol. 35:385-389;
[3] Murray et al., Clin. Pharmacol. Ther. (1981) 30:805-809;
[4] Jamei et al., (2009) AAPS Journal 11:225-237.