N1-Benzoyl-N2-[1-(1-naphthyl)ethyl]-trans-1,2-diaminocyclohexanes: Development of 4-chlorophenylcarboxamide (calhex 231) as a new calcium sensing receptor ligand demonstrating potent calcilytic activity

A structure-activity relationship (SAR) study was performed principally at the N1 position of N1-arylsulfonyl-N2-[1-(1-naphthyl)ethyl]-trans-1,2-diaminocyclohexanes, a new family of calcilytics acting at the calcium sensing receptor (CaSR). The most active compound in this series was the 4-(trifluoromethoxy)benzenesulfonyl derivative 7e, which displayed an IC50 of 5.4 ± 0.5 µM with respect to the inhibition of calcium-induced tritiated inositol phosphate ([3H]IP) accumulation in Chinese hamster ovarian (CHO) cells expressing the CaSR. Replacement of the sulfonamide linkage of this compound by a carboxamide led to a 6-fold increase in activity (7m, IC50 = 0.9 ± 0.2 µM). Among the carboxamides synthesized, one of the most active compounds was the 4-chlorophenylcarboxamide (1S,2S,1’R)-7n (Calhex 231, IC50 = 0.33 ± 0.02 µM). The absolute configuration of (1S,2S,1’R)-7n was deduced from an X-ray crystallographic study of one of the diastereomers of compound 7d. The stereochemical preference for the (1S,2S,1’R)-isomers can be rationalized on the basis of a three-dimensional model of the calcilytic binding pocket of the CaSR. Removal of the C-1′ methyl group or replacement of the 1-naphthyl group by a 2-naphthyl or biphenyl moiety led to appreciable loss of calcilytic activity. Compounds 7e, 7m, and Calhex 231 did not stimulate [3H]IP accumulation in CHO cells expressing or not expressing the CaSR.

Albane Kessler, Hélène Faure, Christophe Petrel, Didier Rognan, Michèle Césario, Martial Ruat, Philippe Dauban, Robert H. Dodd
August 24, 2006
Learn More
LinkedIn