How Does the In Vivo Biliary Elimination of Drugs Change with Age? Evidence from In Vitro and Clinical Data Using a Systems Pharmacology Approach

Information on the developmental changes in biliary excretion (BE) of drugs is sparse. The aims of this study were to collate literature data on the pharmacokinetics of biliary excretion of drugs used in pediatrics and to apply a physiologically-based pharmacokinetic (PBPK) model to predict their systemic clearance (CL) with a view to elucidating age-related changes […]

Read More
Topics:

Development of a Permeability-limited Model of the Human Brain and Cerebrospinal Fluid (CSF) to Integrate Known Physiological and Biological Knowledge: Estimating Time Varying CSF Drug Concentrations and Their Variability Using In Vitro Data

A 4-compartment permeability-limited brain (4Brain) model consisting of brain blood, brain mass, cranial and spinal cerebrospinal fluid (CSF) compartments has been developed and incorporated into a whole body physiologically-based pharmacokinetic (PBPK) model within the Simcyp Simulator. The model assumptions, structure, governing equations and system parameters are described. The model in particular considers the anatomy and […]

Read More
Topics:

Predicting Variations in Drug Clearance in Obese Patients Using Modeling and Simulation

Trevor Johnson

Many physiological changes are associated with obesity and can potentially impact pharmacokinetics (PK). This can require adjustments to be made to the standard doses for normal weight patients in order to ensure safety and efficacy of drug therapy. Dosing of specific drugs in this population is dependent on their physico-chemistry as well as changes in body […]

Read More
Topics: Model-based Drug Development, PBPK Modeling and Simulation

Certara’s Best of Blogs 2015

A selection of short essays from our blog, written to empower our customers with biosimulation and regulatory writing solutions in order to help them solve the toughest drug development problems. Certara staff contributions range in topic from pharmacometrics to systems biology to the growing importance of regulatory writing.

Read More
Topics:

Learning from Failure: Leveraging Biosimulation for Pediatric Drug Development Success

The high rate of trial failures, increasing regulatory demands, and ethical imperatives all require a reexamination of the current approach to pediatric drug development. Biosimulation is a proven approach that will help optimize trial design and inform the drug label. This approach can support global regulatory strategies that increase the likelihood of success for pediatric drug development programs.

Read More
Topics:
Learn More
LinkedIn