

Beyond the SARs - Adding More Pizzazz to your Analysis

UGM 2019

Dennis Powell Senior Consultant

Beyond the SARs - Adding More Pizzazz to your Analysis

Exploring Activity Trends in Matched Molecular Series

Structure Similarity and MPO Scoring-Looking for Interesting Outliers

Revisiting Favorite Tools

	•	NH ₂	\geq
(•) ×	Histogram [1]: Sel
	Pr	rimary Viewer	N
	Re	ename Viewer.	
		lose	
	M	ove To	►

Export to Data File		Cross Target Summary Personal	•	.30	4.50	525.00	
Export to Application	•	10 Demos	+		BPS form		
Follow-on Query	•	Oncology Project	•		Kinase Project F	lgroup Full new	
Edit Cells	F				Kinase Project F Kinase Project F	tgroup SP tgroup SP pIC50	

CERTARA

Exploring Activity Trends in Matched Molecular Series

- There are multiple D360 tools that enable the exploration of Structure Activity Relationships:
 - Chemical Series
 - Structure Similarity Maps
 - R-Group Analysis-RGM
 - Structure Comparison Viewer
 - Matched Molecular Series
- A combination of several of these tools will allow us to graphically examine the change in activity with variations in a specific portion of the structure

Exploring Activity Trends in Matched Molecular Series-Setup ...

• Do an R-Group Analysis

elect R-Group Columns to include in the analysis:			
All Dataset R-Group Columns:		R-Group Columns to Analyze:	
		CORE	
		R1	
		R2	
	Add >		

Do a Match Molecular Series Analysis

Exploring Activity Trends in Matched Molecular Series-Line Chart

- Create a Line
 Chart
- Set the X-Axis to R1
- Set the Y-Axis to Desired Property and Log Scaled

Chart Properties: Li	ne Chart
General	Data
X-Axis	
Y-Axis	MMS_Variation @CORE
Series	MMS_ Variation (grt2
Point Color	
Point Size	
Point Shape	+ Add to Series Definition X Remove from Series Definition
Lines	MMS_Variation @R1
Trellis	^
Tooltip/Label	↓ ↓
	×
	Series Definitions
	Show Color Thickness Style Value
	2 3 T 2 ^
	✓ 3▼ → 3
	✓ 3 ▼ 4
	✓ 3 ▼ 5 ▼
	Categorical scaling Binned 10
	Transparency: 25 %
	Apply Apply & Close Close

- Set up the Series to match the X-Axis R-Group
- Make the Axis Categorical

Exploring Activity Trends in Matched Molecular Series-Connected Line Chart

Exploring Activity Trends in Matched Molecular Series-Add a Grid Viewer

Exploring Activity Trends in Matched Molecular Series-Primary Viewer mode

CERTARA

Exploring Activity Trends in Matched Molecular Series-Focus on One Series

- Order R1 by activity
- You can easily pick other series from the filter dialog
- You can easily switch to other properties from the Y-Axis

CERTARA

Exploring Activity Trends in Matched Molecular Series-Focus on One Series-2

- Switched to MPO Score-Y-Axis
- Sorted R1 by MPO Score

How does activity change when only one Fragment changes?

- Right click on one of the desired R1 fragments and select Filter **Is Structure**
- Disable this Filter Gadget
- Right click on another one of the desired R1 fragments and select Filter Is Structure
- Re-enable the first structure gadget and set the logic for this section to be "Any". This will find all compounds in the dataset that have either of these R1 fragments

Exploring Activity Trends in Matched Molecular Series-Explore the Pairwise Results

- Clear indications of the effect of pair-wise changes in activity
- Easy to change activity (Y-Axis) or individual R-Group pairs

Exploring Activity Trends in Matched Molecular Series-Explore the Pairwise Results

Structure Similarity and MPO Scoring-Looking for Interesting Outliers

- How do changes in the overall structure for a series of compounds affect activity?
 - Structure Similarity Maps give an overall view of all the structures along with activity data
- How does the activity vary with Similarity to a single compound?

Structure Similarity and MPO Scoring-Looking for Interesting Outliers-Setup

- Pick the Compound in your current dataset to focus on (e.g. CHEMBL 1241676)
 - This might be the most potent compound in your primary assay or the one with the best overall profile
- Create a Similarity equation

Equation:	+ - / * ()
similarity(C3,'	'ID", "CHEMBL1241676")

Create a Multi-Parameter Score for your desired profile

Multi-Parameter Scoring		×								
Information Multi-Parameter Scoring assesses the quality of substances relative to each other by balancing the values of various molecular properties in a single overall scoring function.										
۲ MPO Score Criteria										
Filter Data Fields:										
🕂 🗶 🖉 🕞 🍏 💭										
Data Field	Function	Weig								
c-SrcGMeanIC50 (nM)	Low Values Good	2								
EGFRGMeanIC50 (nM)	High Values Good	1								
VEGFR2GMeanIC50 (nM)	Low Values Good	1								
PI3KbetaGMeanIC50 (nM)	High Values Good	1								
PI3KdeltaGMeanIC50 (nM)	High Values Good	1								
✓ Add scores as a % of th ✓ Add raw scores	e max scores									
Add scoring function n	nax scores									
Column Prefix: MPO Score										
	Calculate Scores C									

Create an equation to show the MPO scores of all compounds relative to my reference compound Equation:

Spreadsh	eet					
		ChEMBL Id	Structure	▼ Similarity to CHEMBL1241676	MPO Score - % Score	MPO relative to CHEMBL 1241676
1:		CHEMBL1 241676		100	51.9	-0.00
2:		CHEMBL1 241580		95	65.7	-13.84
3:		CHEMBL1 242376		93	57.0	-5.14
			\square			

51.9-C28

- Reverse the axis for the Similarity Score (X-Axis)
- Add in Point color for the primary assay
- Add in point size for a EGFR/c-Src selectivity value
- Add some assays to the tooltip
- Add in some sticky labels (v20.1!)

Structure Similarity and MPO Scoring-Looking for Interesting Outliers-Scatterplot tuned

Compounds that are

similar in structure to

the target that have a

Compounds that are not

good, if not better MPO?

19

CERTARAC

much lower MPO?

similar to the target

compound that have

Exploring Assay Performance with Selected Compounds

- There are several ways to see how your compounds are behaving in assays:
 - Dose Response Curves
 - Statistical aggregation types like standard deviation and confidence intervals as columns to your dataset
 - Looking at the in cell indicators for the clues about the underlying unaggregated data
- Several other assay performance analyses you might want to do:
 - How standards perform in assays over time
 - Reproducibility of compounds across assays

- Compound ID (constrained by 4 compound IDs)
- Structure (if desired)
- Assay that is under review (e.g. c-Src Kinase)
 - Include the summarized value (e.g. IC50) with the aggregation functions GMean and Concatenate LF and Standard Deviation.
 - Include the date the experiment was run with the aggregation function of Concatenate LF.

Exploring Assay Performance with Selected Compounds-Standards-Line Chart

Add a Line Chart

- X-Axis is date the experiment was run (concat LF)
- Y-Axis is Assay IC60 (concat LF). Set this axis to be log scaled
- Set the Line Series up to use the Compound ID column

Exploring Assay Performance with Selected Compounds-Reproducibility

- In assay development or quality control you might want to see how multiple measurements during the same run look for your compounds
- While it is easy to add in statistical fields like Standard Deviation, Min, Max... it is sometimes easier to just visualize it

Setup

- Compound ID (constrained by two compound IDs)
- Structure
- Assay that is under review (e.g. Cell growth Inhibition)
 - Desired result type (e.g. IC50) and set the cell line condition to be unpivoted
 - Include the Analysis fields **Batch Name** and **Experiment Date**
 - Constrain the Experiment date to a date or set of dates to review
 - Set the query to run as **Unaggregated**

Exploring Assay Performance with Selected Compounds-Scatter Graph

Unaggregated, not pivoted dataset

Exploring Assay Performance with Selected Compounds-Box Plot

- Box Plots give a quick visual indication of data range
- Tooltips afford all the detailed statistics for the Box (and Whisker)

Follow On Queries-not just for Administrators

- Most organizations have Follow On Queries (FOQ) as standard templates for common workflows
- Often overlooked is the ability for any user to create FOQs for personal or project use

Any query can be an FOQ that

- Has a Domain-able field (e.g. Compound ID) or a structure field exposed in the widget
- Is saved as a widget
- Is visible on the Dashboard

KnowledgeBase Articles-where to find these workflows!

raar oompoando in Dooo

- An Overview of Virtual Compounds
- Adding Virtual Compounds to a D360 Dataset
- Enumerating Virtual Compounds from R-groups and Cores
- Deleting Virtual Compounds from a D360 Dataset
- Creating a D360 Dataset from a Chemical Structure File or Sketch
- Capturing Virtual Compounds

Exporting Data

- Exporting Data to Excel
- Exporting Data to Data Files csv, tsv, sdf, xls, xlsx, json
- Exporting Data to PowerPoint
- Copying Data to the Clipboard

Miscellaneous

- D360 URL execution of query templates
- Installing D360 on a Windows PC
- Installing D360 on a Mac
- How to Specify Chiral Information in Commonly used Chemical Sketchers
- Test Automation Tool

Tips and Tricks for Small Molecule Discovery

- Exploring Activity Trends in Matched Molecular Series
- Structure Similarity and Multi-Parameter Scoring Looking for Interesting Outliers
- Exploring Assay Performance with Selected Compounds
- Bioprofile Summary Results

D360 Partner - A D360 Client for External Research Partners

- D360 Partner An Overview of Sharing Data with External Research Partners
- D360 Partner setup for Administrators
- D360 Partner Query setup
- D360 Partner Use

Acknowledgements

- Exploring Activity Trends in Matched Molecular Series
 - John Cummings (Roche), Lars Burgdorf (Merck KGaA), Dietrich Boese (Merck KGaA)
- Exploring Assay Performance with Selected Compounds
 - Beverley Smith (Medimmune)
- Favorite tools
 - Justin Montgomery (Pfizer)
- Certara Folks
 - David Lowis, and the Development Team for giving me all the tools...

One More Thing...R-Group Activity Contribution Analysis

- Modeling the contribution of each R-Group fragment to any activity could lead to a better understanding of the SAR for the series
- With a good model in hand, you should be able to Predict the activity of Virtual compounds
- This would augment the services that several companies have with virtual assays.

R-Group Activity Contribution Analysis – Setup

R-Group Matrix

- R1 sorted by Min c-Src activity •
- R2 sorted by first fragment c-• Src activity

R-Group Activity Contribution Analysis – Virtual Compounds 1

R-Group Activity Contribution Analysis – Virtual Compounds 2

x Enumerated Structure Selector 3 🌲 Select All Invert Selection Clear Selection # Columns 1 1 V

- Virtual Compounds
 - Enumerated the Compounds

R-Group Activity Contribution Analysis – Virtual Compounds 3

- R-Group Matrix
 - New Virtual Compounds are highlighted with larger size and no activity

R-Group Activity Contribution Analysis – Analysis Setup

 R-Group Activity Contribution Analysis (v20.1)

Model Molecular Properties from R-Groups								
☐ Information								
Modeling molecular properties employs the Free-Wilson method to determine contributions of various substituents to a chosen molecular property or biological activity.								
You can choose to produce independent models each core from an R-Group analysis or to generate a single model employing the core as a site of variation.								
Structures with R-groups that are unique to that structure cannot be included in the model. If a core structure is associated with > 10 structures then these structures will have a model created for them.								
On completion of the calculation you will be presented with information that will tell you whether a valid model was created.								
One model per core structure								
One model overall (considering core as a site of variation)								
Select Single Property to Model:								
Filter: Show hidden columns								
c-SrcGMeanIC50 (nM)								
EGFRGMeanIC50 (nM)								
VEGFR2GMeanIC50 (nM)								
c-AbIGMeanIC50 (nM)								
HCKGMeanIC50 (nM)								
PI3KalphaGMeanIC50 (nM)								
Log scale property Create R-Group Contribution Models Cancel								

R-Group Activity Contribution Analysis – Analysis Setup - 2

Good Model with low standard error

ieue gy t)	CORE	R1	R2	R-Group Contribution LOG c-Src - GMean - IC50 (nM) CORE Contribution	R-Group Contribution LOG c-Src - GMean - IC50 (nM) R1 Contribution	R-Group Contribution LOG c-Src - GMean - IC50 (nM) R2 Contribution	R-Group Contribution LOG c-Src - GMean - IC50 (nM) Modeled Value
əted	NH ₂ N N N N R1	R		1.78	-2.07	0.20	0.81
əted	NH ₂ N N N N N R1	R1	F R2	1.78	-2.07	0.59	1.99

R-Group Activity Contribution Analysis – Predict!

• With a good model in place lets predict the activity of the Virtual Compounds

N A	-		_											
📦 Data Vi	iew	: Free Wilson s	lide	s [1]										
File Edit		F <u>o</u> rmat Viewe	ers	Analysi	s Dat	ta Virtual <u>C</u> omp	ounds Quick Se	arch	Window	Help				
🗢 🛃 😂 🕋 🌆 🖬 🛙					Quick Color				🕨 🗐 🖘 🗣 🏷 🏦 🐺 Arial Unicode MS 🖵 10					
Spreadsheet			0	Color by <u>V</u> alue							×			
		ChEMBL	EMBL M	Multi-F	Parameter Scoring	9	•	/EGFR2 GMean	c-Abl GMean	HCK	PI3K GN	:		
		Id		F	Highlight Updated Assay Data		IC50 (nM)	IC50 (nM)	IC50 (nM)	IC50				
				R	R-Grou	ıp Analysis		۰Į						
			2	R	R-Group Activity Contribution Analysis •			•	Create P	roperty Model fr	Model from R-Groups			
177:		VC~00000 006		0	Correlation <u>M</u> atrix			View Models						
				, ,				Predict						
					Junish	com						<u> </u>	_	
178:		VC~00000 007	ž		× √ √ √ √ √ √ √									
				K										

R-Group Activity Contribution Analysis – New RGM

R-Group Matrix with the Point Color by Model Predicted Activity

R-Group Activity Contribution Analysis – New Targets for Synthesis

- Virtual Compounds with Modeled Predicted Activity...
- Filtering by this predicted activity for the Virtual Compounds affords good candidates for Synthesis

