


# **AZ workflows involving D360**

William McCoull (<u>william.mccoull@astrazeneca.com</u>) Nick Tomkinson (<u>nick.tomkinson@astrazeneca.com</u>)

D360 UGM, Boston

8<sup>th</sup> October 2019



#### About us...

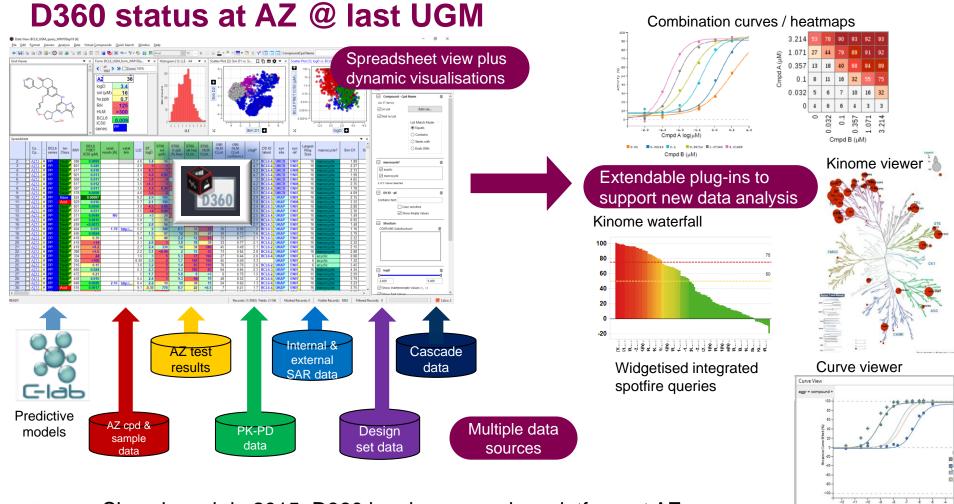
#### Bill McCoull

- AstraZeneca D360 business lead
- Do data analysis every day in projects
- 15+ year involvement with AZ analysis tools
- End user "I care what the tool does and how to use it"

#### Nick Tomkinson

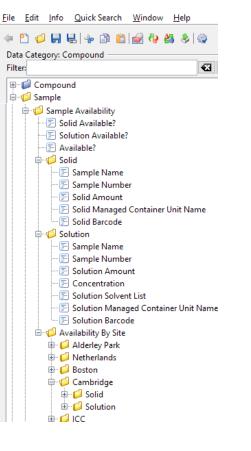
- AstraZeneca D360 tools workstream lead
- Informatics analyst
- 20+ year involvement with AZ analysis tools
- Work with users to provide analysis & visualisation








#### Outline


| 1 | Sample availability – switching a data category folder       |
|---|--------------------------------------------------------------|
| 2 | Design workflow – calculation cache & virtual/real compounds |
| 3 | 3D visualisation requirements                                |
| 4 | R-group stripping                                            |
| 5 | Medchemica Matched Molecular Pairs                           |
| 6 | Summary                                                      |





Since launch in 2015, D360 has become a key platform at AZ

# **GSM (Global Sample Management) availability**



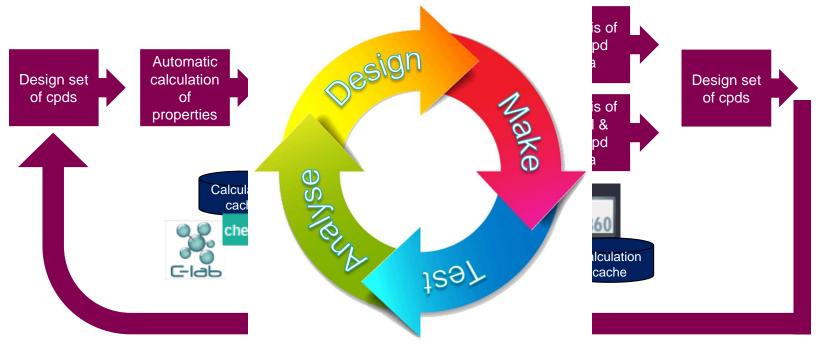
- Previously used an ETL process to populate a static hierarchy of folders in D360 data category
  - Prone to errors lacked full reliability
- Moved to a real-time query of GSM availability
  - Kept the same folders (avoid user confusion)
  - Can add fields but not take away
  - Existing queries did not break
- Pro's
  - Improved reliability & accuracy
  - D360 query functionality allows easier & more powerful querying of availability than existing GSM tool
- Cons
  - Slow if large #cpds & complex query (not an issue for vast majority of use)



## **GSM (Global Sample Management) availability - output**

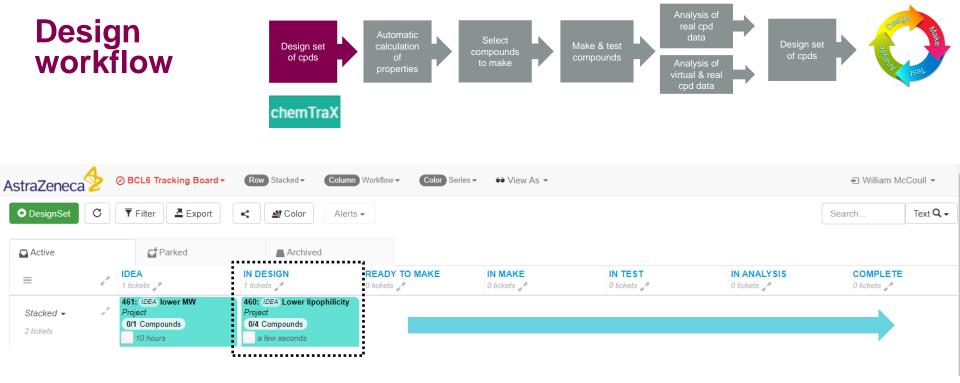
• Easy to display all samples for a specified cpd

|    | ▼<br>Compound<br>Name | ⊂<br>CSS<br>SName | CSS<br>SN | CSS<br>amt (mg) | CSS<br>site       | CSS<br>Barcode | ⊃<br>PLS<br>SName | PLS<br>SN                                    | PLS<br>amt (ml)         | PLS<br>concn | PLS<br>site                          | PLS<br>Barcode                   |
|----|-----------------------|-------------------|-----------|-----------------|-------------------|----------------|-------------------|----------------------------------------------|-------------------------|--------------|--------------------------------------|----------------------------------|
| 1: | <u>Cpd</u> 11         | Cpd 11 -004       | SN1052278 | 17.4            | Specs Netherlands | 5006004946     | Cpd 11 -004       | SN105227<br>SN105227<br>SN105227<br>SN105227 | 0.163<br>0.726<br>0.556 | 10           | Boston<br>Cambridge<br>Alderley Park | 30797712<br>30954946<br>31518156 |


• Or aggregated data e.g. largest solid sample or largest solution sample at specified concentration/solvent available

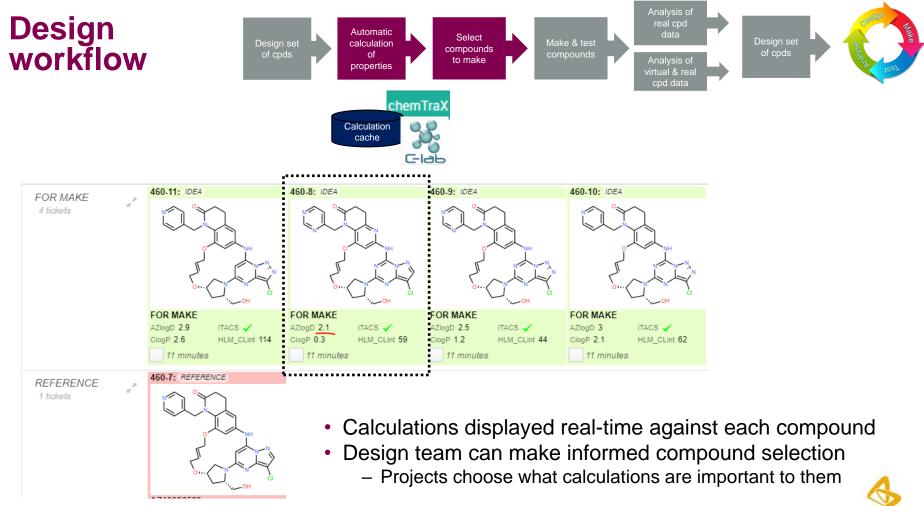
|    |        |    | NLSP<br>max (mg) | GHP CSS<br>max (mg) | Cam CSS<br>max (mg) | AP PLS<br>max<br>10 mM (ml) | GHP PLS<br>max<br>10 mM (ml) | Mo PLS<br>max<br>10 mM (ml) | Cam PLS<br>max<br>10 mM (ml) |
|----|--------|----|------------------|---------------------|---------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|
| 1: | $\leq$ | 13 | 14.7             |                     |                     | 0.31                        |                              | 0.14                        |                              |
| 2: | $\leq$ | 11 | 17.4             |                     |                     | 0.56                        | 0.16                         |                             | 0.73                         |
| 3: | $\leq$ | 5  | 78.1             |                     | 2.8                 | 0.08                        | 0.05                         |                             |                              |



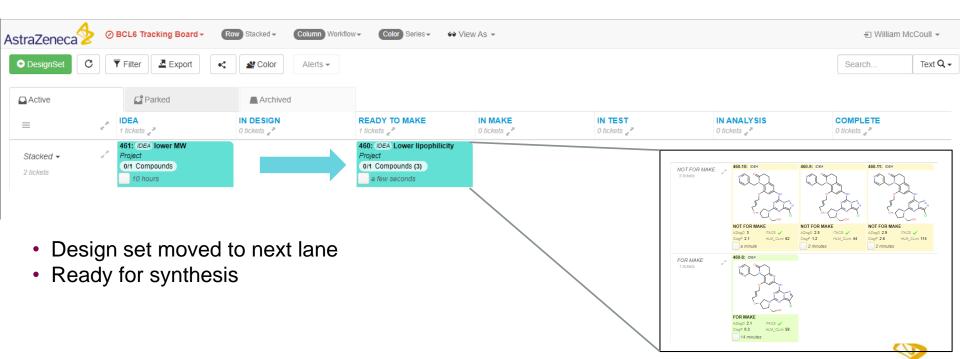

## **Design workflow**

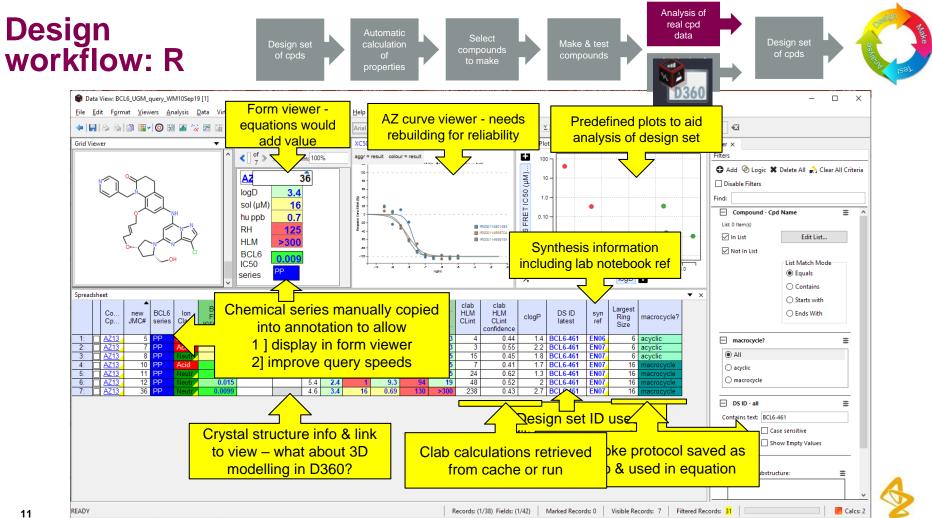


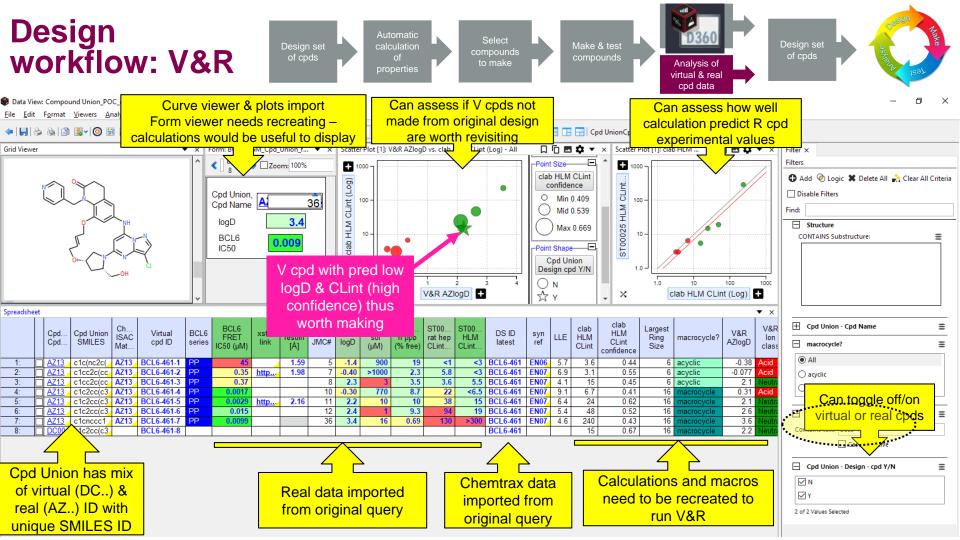



- D360 facilitates the analysis step of the design-make-test-cycle
- D360 is a project query, visualisation and analysis tool





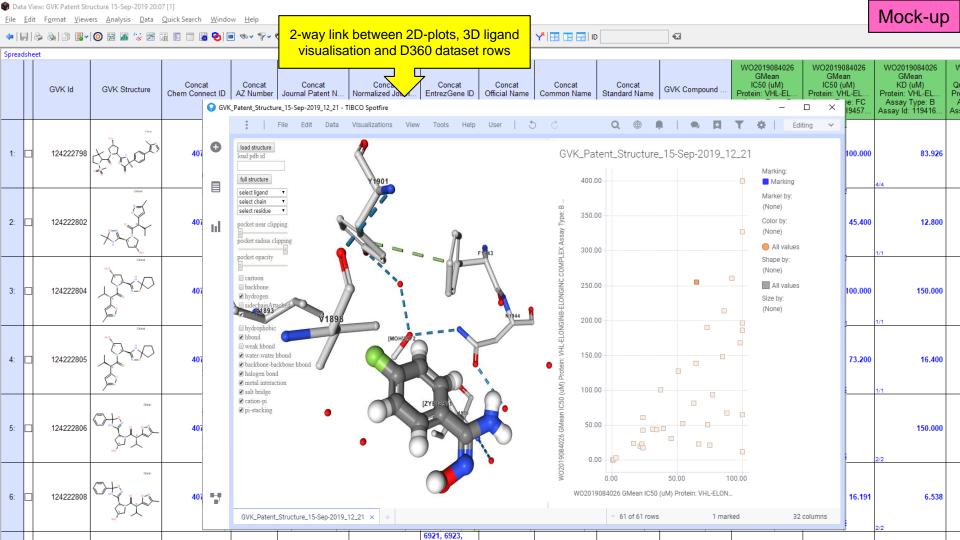


- ChemTrax used to manage progress of design sets through DMTA process
- Design sets of compounds created against design hypotheses
- Swim lanes used for each step in the process












## **3D Visualisation - Requirements**

- Dynamic selection & editing of ligand (2-way)
- Save and share visualisations
- Read target and electron density/grid information
- Access to computational methods (docking/minimisation/FEP)
- Customizable interface
- Easy ways to focus in on binding site
- High quality rendering & antialiasing, display interactions, grids & surfaces



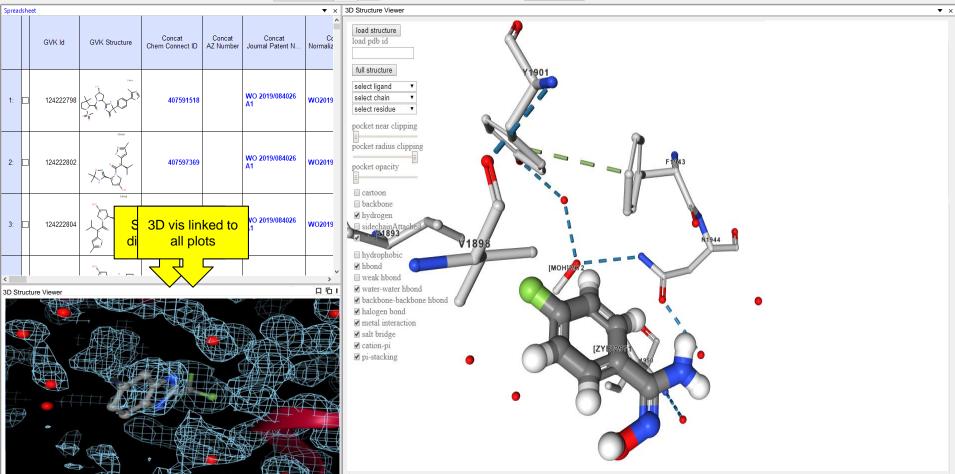


Data View: GVK Patent Structure 15-Sep-2019 20:07 [1]

<u>File Edit Format Viewers Analysis Data Quick Search Window H</u>elp

#### 🗢 🔲 🗞 🔞 🗇 📓 🗸 🞯 📓 🐩 💯 🗒 🗉 🕤 🗃 😒 🗐 🐟 🖓 🏷 🏦 🦉 Arial 🗤 🗸 10 🗸 🕒 🛛 🖳 🖳 🖉 🗮 🐨 🖓 👘 🕞 D

| Spread | readsheet  v x 3D Structure Viewer |           |               |                           |                     |                            |                            |                                                                                                                                     |                         |   |                                                                                                                                    |
|--------|------------------------------------|-----------|---------------|---------------------------|---------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---|------------------------------------------------------------------------------------------------------------------------------------|
| Spread | Inter                              |           |               |                           |                     |                            |                            |                                                                                                                                     | •                       | Â |                                                                                                                                    |
|        | (                                  | GVK Id    | GVK Structure | Concat<br>Chem Connect ID | Concat<br>AZ Number | Concat<br>Journal Patent N | Concat<br>Normalized Journ | Concat<br>EntrezGene ID                                                                                                             | Concat<br>Official Name |   | load structure<br>load pdb id                                                                                                      |
| 1:     |                                    | 124222798 |               | 407591518                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6921, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 7428,<br>7428, 7428, |                         |   | full structure     1901       select ligand     •       select chain     •       select residue     •                              |
| 2:     |                                    | 124222802 | ALC.          | 407597369                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6921, 6923,<br>6923, 6923,<br>7428, 7428,<br>7428, 8453,<br>8453, 8453                                                              |                         |   | pocket radius clipping<br>pocket opacity                                                                                           |
| 3:     |                                    | 124222804 |               | 407588402                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6921, 6923,<br>6923, 6923,<br><b>2-way</b>                                                                                          | link                    |   | Cartoon<br>backbone<br>hydrogen<br>sidechainAttached<br>189,8<br>N1944                                                             |
| 4:     |                                    | 124222805 |               | 407589535                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6923, 6923,<br>7428, 7428,<br>7428, 8453,<br>8453, 8453                                                                             |                         | _ | hydrophobic hond weak hbond bond bond bond bond bond bond bond                                                                     |
| 5:     |                                    | 124222806 |               | 407599052                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6921, 6923,<br>6923, 7428,<br>7428, 8453,<br>8453                                                                                   |                         |   | <ul> <li>☑ halogen bond</li> <li>☑ metal interaction</li> <li>☑ salt bridge</li> <li>☑ cation-pi</li> <li>☑ pi-stacking</li> </ul> |
| 6:     |                                    | 124222808 |               | 407597371                 |                     | WO 2019/084026<br>A1       | WO2019084026               | 6921, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 7428,<br>7428, 7428,<br>7428, 7428,<br>7428, 4453,<br>8453, 8453,                |                         |   |                                                                                                                                    |
| 7.     |                                    | 124222810 | 13.20         | 407599051                 |                     | WO 2019/084026             | WO2019084026               | 6921, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 6923,<br>6923, 7428,                                                             |                         |   |                                                                                                                                    |


•\*\*

Mock-up

Data View: GVK Patent Structure 15-Sep-2019 20:07 [1]

<u>File Edit Format Viewers Analysis Data Quick Search Window H</u>elp

#### 🗢 📙 😓 💩 🗊 圖 🗸 🞯 圖 🐨 🖄 🔞 🗊 👘 😒 🌳 🌾 😚 🏥 🖘 🛠 🍫 🎼 🦠 👘 🖘



**•** 

## **R-Group Analysis**

- fRGS
- Pipeline Pilot/Spotfire
- SARPlatform
- D360
- Moesaic

Related applications

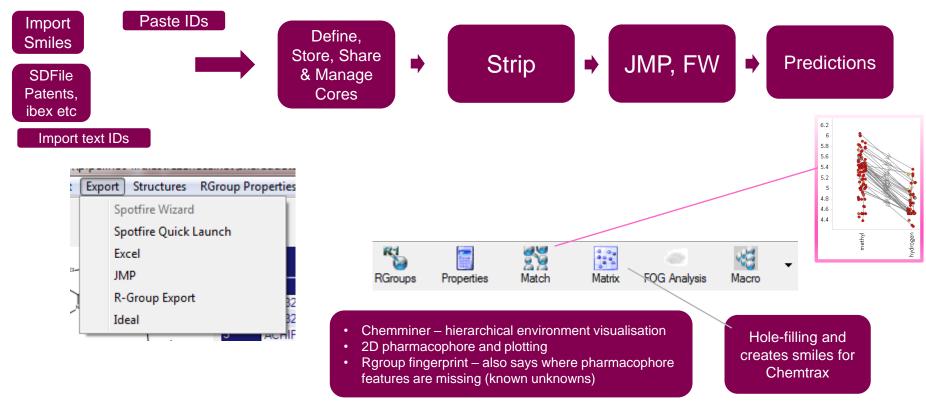
- Matched pairs
- Spark



#### D360 R-Group Analysis

| Select Structures          |                   |                                                |  |  |
|----------------------------|-------------------|------------------------------------------------|--|--|
| Use Structure Column: Stru | ucture            | <b>-</b>                                       |  |  |
| Use Structures:            | All 💿 Selected    | I Only 💿 Marked                                |  |  |
| Analysis Input             |                   |                                                |  |  |
| Edit Core Paste 0          | Core Cle          | ar Core Copy Core                              |  |  |
| -                          |                   | Specify Core & R-Grou                          |  |  |
|                            |                   | Compute MCS                                    |  |  |
|                            | _0                | Auto-assign R-Groups<br>Core Chirality Treatme |  |  |
|                            | F                 |                                                |  |  |
|                            |                   | Ignore                                         |  |  |
|                            | N                 | Match unspecified                              |  |  |
| R1                         | R2                | Exact match only                               |  |  |
|                            | Analyze Structure | 5                                              |  |  |
| R-Group Deconvolution Res  | sults             |                                                |  |  |
| 0 Structures Analysed      |                   |                                                |  |  |
| Structures ha              | ve a single core  | View Structures                                |  |  |
| Structures ha              | ve multiple cores | View Structures                                |  |  |
| Structures do              | n't have core     | View Structures                                |  |  |
| Structures ha              | ve errors         | View Structures                                |  |  |
| Trivial (H/LP              | only) R-Groups    | View                                           |  |  |
| Redefine Core              |                   |                                                |  |  |
|                            |                   |                                                |  |  |

v 9

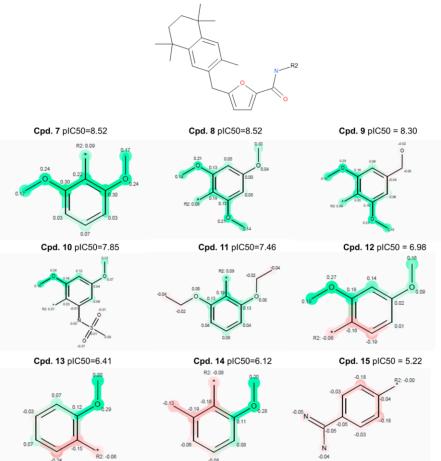



| Structure Column: | Structure                                  |                                 | Ŧ     |
|-------------------|--------------------------------------------|---------------------------------|-------|
|                   | Structure assigned to the FIRS             | ST matching core (Hierarchical) |       |
| Cores             |                                            |                                 |       |
| 🖶 🗶 🕅 🔌           | 😣 🗊 💼 📝 CompoundID:                        |                                 | 8     |
|                   | Rt O                                       | 33                              | * * * |
|                   |                                            |                                 |       |
|                   |                                            |                                 |       |
|                   |                                            |                                 |       |
|                   | Chirality Treatment                        |                                 |       |
| R-Group Deconvo   | Ignore Match unspecified                   |                                 |       |
| R-Group Deconvo   | Ignore Match unspecified                   |                                 |       |
| R-Group Deconvo   | Ignore Match unspecified<br>Intion Results | ed 🔘 Exact match only           |       |

Recent changes have removed Auto generation of MCS and R-Groups



### fRGS Workflow(s)




• Some of this functionality is available in D360 but still significant gaps



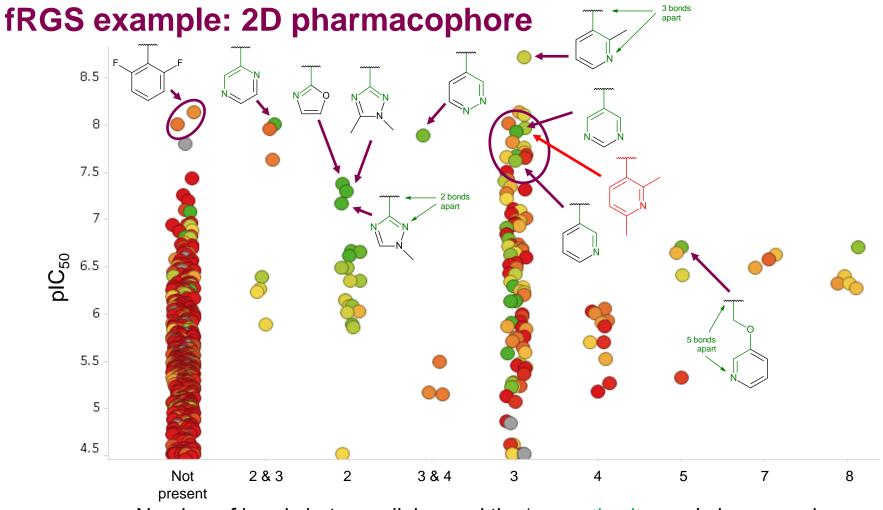
#### **Machine-Learning Atom Contributions**

Model Interpretation



Useful to see what data has contributed to the visualisation

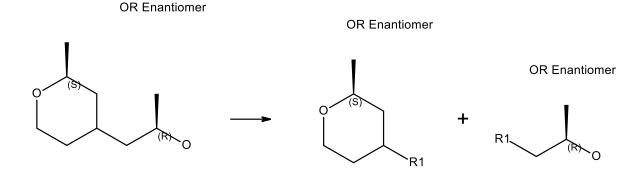
Mats Eriksson, Hongming Chen, Lars Carlsson, J. Willem M. Nissink, John G. Cumming, and Ingemar Nilsson, Ulf Norinder, Peter Varkonyi


Journal of Chemical Information and Modeling (2014), 54(4), 1117-1128, Journal of Chemical Information and Modeling (2013), 53(6), 1324-1336



#### **Comparative performance**

|    |                                           | fRGS                                | D360                                           | SAR Platform                       |
|----|-------------------------------------------|-------------------------------------|------------------------------------------------|------------------------------------|
| 1  | Multiple mappings                         | Yes                                 | Yes                                            | Yes                                |
| 2  | Chiral R groups                           | Yes                                 | Yes                                            | Yes                                |
| 3  | Chirality in the core                     | No                                  | Yes                                            | Yes                                |
| 4  | Chirality at attachment point             | No                                  | No – scrambles core                            | Yes                                |
| 5  | Symmetry                                  | Yes but needs improving             | ?                                              | Yes                                |
| 6  | Double bond geometry in core              | ?                                   | ?                                              | ?                                  |
| 7  | R groups as linkers                       | Yes except if linker is single atom | Possibly – seems odd                           | No – not in Auto RGroup detection. |
| 8  | R groups that cyclise onto core           | Yes                                 | Yes -but odd                                   | No                                 |
| 9  | "C vs N in aromatic ring"                 | No – need to draw 2 cores           | OK for aliphatic C/O not<br>checked for c vs n | Yes – input as SMARTS              |
| 10 | Automated core perception                 | No                                  | MCS removed from v10                           | Yes                                |
| 11 | #compounds matching MCS                   | No                                  | No                                             | Yes                                |
| 12 | Alternative tautomers in core or R groups | ?                                   | ?                                              | ?                                  |
| 13 | Double/triple bond to R groups            | Yes                                 | Yes                                            | ?                                  |



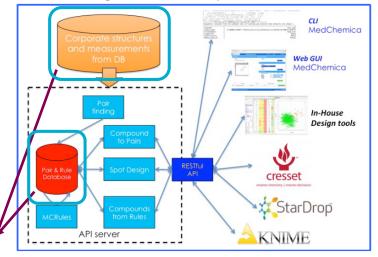



Number of bonds between linker and the 'aromatic nitrogen' pharmacophore

#### **R-Group Requirements:**

- Core entry, management and perception:
  - Autodetect core
  - Edit core or supply from scratch. Manage (save, share) cores.
- AZIDs, virtual compounds (mol/smiles), external compounds etc. from Database, SD, text and clipboard. Ideally from within D360.
- Handle poorly defined compounds chiral mixtures etc. and any enhanced features.
- Provide user-defined ability to handle equivalencing of structures, cores and R-Groups. For example, R and Racemate in R-Group.
- Also need to retain enhanced stereo in R-Group and core. (What to do about relative stereo between core and R-Group? The following example loses the relative relationship between the 2 stereo centres.) This is NOT currently handled by any approach.






### MedChemica CREATING A STEP CHANGE IN MEDICINAL CHEMISTRY

MCPairs Enterprise provides access to MedChemica's leading Artificial Intelligence and exploitation

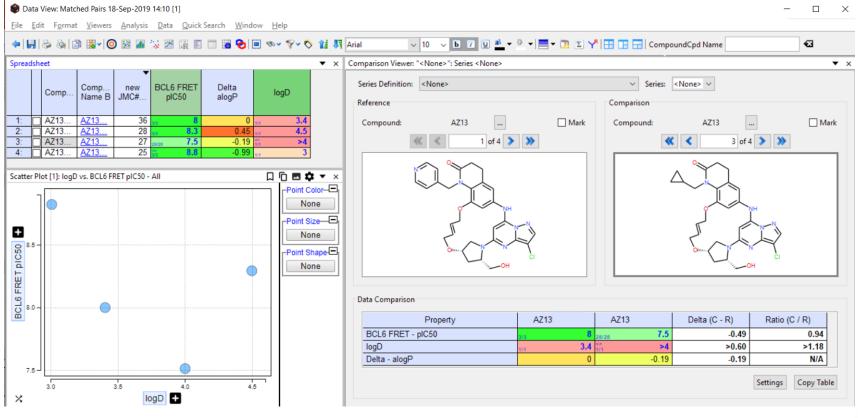
platform. For organisations with compounds and measurements, MCPairs will extract knowledge and build a unique database of corporate knowledge. MCPairs uses the method most trusted by medicinal chemists: Matched Molecular Pair Analysis and puts it to work helping their chemists design and progress better compounds faster.

Database, API and GUI's. MCPairs can be configured to automatically update from internal databases; constantly keeping the knowledge up to date. This enables all users to instantly look up matched pairs and perform SAR analysis and free up computational chemists to concentrate on high value activities.



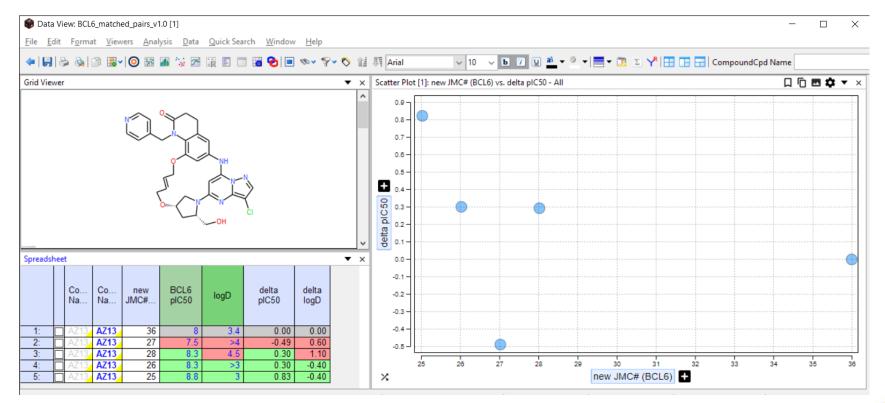
#### **Matched-Pairs**

"AZ have especially pair-dense data.


Prediction is 2000 CPUs for 1 month. With current 140 CPUs on HPC this will take all year (840K done so far and expected to slow down).

Running pair-finding interferes with update of existing information for current projects. (Data currently available through Ideal.)"

- Data availability through D360
- · Performance of federated teeid view unacceptable due to Union SQL statement
- ETL daily build into datamart using Pipeline Pllot




#### **Matched-Pairs: D360 Comparison viewer**





#### **Matched-Pairs: D360 formulas**





#### What next for AZ & D360?

- v19 rollout in Oct19
- HTS data integration
- More reliable curve viewer
- Integration of AI/ADD tools, 3D vis tools
- Future infrastructure



#### Summary

- Swapping/modifying data sources (GSM) requires significant planning
- D360 useful in design meetings for visualising data on real cpds
- Virtual & Real (Cpd Union) data category aids design/analysis still WIP
- 3D visualisation is important to AZ going forward
- R-group analysis and MMPA still WIP



#### **Acknowledgements**

- William McCoull
- Nick Tomkinson
- Andrew Poirrette
- Emma Evertsson
- Scott Throner
- Wolfgang Klute
- Jon Winter-Holt
- Hongming Chen
- Frank Kilty
- Kalyan Ponamalli
- Science & Enabling Units IT

#### **Confidentiality Notice**

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

- Ian Ingram
- Dennis Powell
- Dave Lowis
- Certara D360 team