

D360 Product Development Themes

Multiple Types of Biologic/Research Process

Antibodies

- Very different workflow from small molecules
- Large number of entities, focus jointly on bioprofile and producability
- ADCs
 - Small number of antibodies, different liners/warheads
 - Reduces to a small-molecule-esque workflow
- Peptides
 - Similar to small molecule workflow Sequence-Activity relationsips
- Oligonucleotides
 - Somewhat similar to small molecule workflow depending on mechanism of action
- Other
 - Vaccines, mixtures of the above concepts, ...

Given that D360 already provides the infrastructure for the data...

What additional tools can be provided that assist data-driven decision making for each new therapeutic modality?

D360 Support for Biologics - Strategy

- Implement General Concepts
 - Multiple new entities a potential data catalog explosion and data configuration
 - General representation of entities
- Implement Modality-specific Concepts
 - 1. Specific entity representation
 - Sequence (including non-natural monomers)
 - Search, formatting, find, filtering, ...
 - 2. Basic analysis
 - Determining measures of similarity
 - Comparison methods
 - o Alignment
 - Clustering
 - 3. Advanced Analysis
 - Extraction of therapeutic-relevant knowledge
 - "Structure"-Activity relationships

Multiple Entities/Data Configuration

Example Small Molecule Data Catalog

Multiple Entities/Data Configuration

Multiple Entities/Data Configuration

Assisting the Configuration

- **General Configuration**
 - Not an issue for D360 at its core it is data agnostic 0
 - But.... More entities, more data fields, more relationships can make 0 configuration management more complex

D360 Updated to allow data catalog to be split over multiple

Assisting the End User: Data Category Selection

CERTARA

Moving to Representation - General and Specific

General Representation

- Support for HELM Notification
 - Allows HELM to be presented
 - Integration with HELM viewer/editor

- Product support for BioVia Renderer
 - Allows Biovia notation presented

CERTARA

Oligonucleotide Representations

- Multiple, sequence-based, oligonucleotide representations
 - HELM, Biovia, single sequence custom format, multi-sequence custom format

Oligonucleotide Support: Filtering and Equations

Peptide/Protein Representations

- Multiple, sequence-based, oligonucleotide representations
 - Peptides: HELM, Biovia, single sequence custom format
 - Proteins: Standard sequence representations
 - Added complication of non-natural monomers
 - Splits concepts of proteins vs. peptides

🕼 Data View: Chembl GSA 49 Sequences [1] - 🗆 🗙								
File Edit F <u>o</u> rmat Viewers Analysis Data Quick-Search Window Help								
(a)								
Spreads	heet	Filter ×						
	ChEMBL Id	Helm Sequence	AssayX GMean IC50 (nM)	Filters • O Add O Logic • Delete All • Clear All Criteria				
1: [CHEMBL1076928	A-E-L-A-A-L-E-A-E-L-A-A-L-E-G-E-R-R-L-I-I-F-N-S-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	61	Disable Filters Find: Helm Sequence				
2:	CHEMBL1076943	A-E-L-A-A-L-E-A-E-L-A-A-L-E-G-A -R-H -F-Y-V-Q-S-V-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	75	Contains text: [L-E-G ⁴ S □ Case sensitive				
3:	CHEMBL1076944	A-E-L-A-A-L-E-A-E-L-A-A-L-E-G-R-S-E-D-P-V-O-S-W-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	96					
4:	CHEMBL1076941	dA-E-L-A-A-L-E-A-E-L-A-A-L-E-G-W-G-S-Q-P-M-D-S-V-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	98					
5:	CHEMBL1076940	dA-E-L-A-A-P-E-A-E-L-A-A-L-E-G-A-S-R-R-I-C-C-S-W-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	140					
6:	CHEMBL1076947	A-E-L-A-A-L-E-A-E-L-A-A-L-E-G-L-Q-T-M-W-H-S-L-W-G-K-L-A-A-L-K-A-K-L-A-A-L-K-A	164					
		A-F-I -A-A-I -F-A-F-I -A-A-I -F-G-I -F-G-K-S-M-G-F-I-G-K-I -A-A-I -K-A-K-I -A-A-I -K-A						

Moving to Basic Analysis - Sequence Alignment

Medicinally Relevant Peptide Sequence Alignment

Bioinformatics studies protein (and DNA/RNA) sequences via sequence RYDSRTTIFSP...BGRLYQVEYAMEAIGNA.GSA RYDSRTTIFSPLREGRLYQVEYAMEAISHA.GTCI alignment GRLYQVEYAQEAISNA.GTA

EGRLY

SR<mark>TTTFSP...EGRLYQVEYALEAINNA.SI</mark>

OVEYAMEAISHA . EGRLYQVEYAMEAIGHA.GT .EGRLYQVEYAMEAIGNA.GS

EGRLYOVEYALEAINHA. GVA

- BUT:
 - Bioinformatics looks for evolutionary relationships between sequences 0
 - Bioinformatics deals only with naturally occurring monomers 0
- What we want:
 - Must deal with unnatural monomers
 - We care about structural and chemical similarity NOT evolutionary distance \bigcirc
- So:
 - We utilize standard bioinformatics alignment algorithms but apply chemical similarity matrices to score alignments
 - Bioinformatics: X matched Y scores 0.7 since there is a 70% chance of an \bigcirc evolutionary mutation
 - D360: X matched Y scores 0.6 since X and Y are 60% chemically similar \bigcirc

This makes D360 sequence alignments medicinally relevant CERTAR © Copyright 2019 Certara, L.P. All rights reserved.

What can we do with the Sequence Alignment?

Alignment options

- Align to reference sequence
 - Comparison of sequences with a reference
- Multiple alignment
 - View overall similarity/differences across a set of sequences
- For both natural and unnatural monomers
- Format and Highlight
 - Color by monomer properties
 - Highlight differences at aligned positions
 - Order sequences by assay data
- Filter sequences

CERTA

By monomer X at position Y

To allow users to understand what sequence changes give improved bio-properties

Basic Analysis: Peptide Sequence Alignment Viewer

differences between sequences which can be compared with changes in biological activity

CERTARA

What about olgio and protein sequence alignment?

Protein sequences

Just need to add in standard similarity matrices

Oligo sequence alignment

• Need to consider the alignment against the gene

Oligonucleotide Alignment: CM_ATXN2_11							
Show Alignments for ID:		Sequence Align Display Sequenc	ment e: Base Sequence ▼ Text size	e: 12 🖨 Copy	Settings Highlight Sequences O Identity O Difference		
Gene	Filter:	ent #Sequ		RTR77817 RTR77819 RTR77818	ECATATATTTTACCTTTEE TECATATATTTACCTTTEE TECATATATTTTACCTTTE		None Base Sequence
Symbol ATXN2	Blocks 217	in large 314	est block	RTR77820 RTR77821 RTR77822	TTECATATATTTTACCTTTE TTTCCATATATTTTACETTT TTTCCATATATTTTAEETT		Sugar Sequence Stereo Sequence Chirailty Sequence
BCL7B GABRB1	1	4	•	RTR77823 RTR77825 RTR77827	ETTTCCATATATTTTACETT ETTTCCATATATTTTACET AETTTCCATATATTTTACET		Sequence Format
Alignment Blo	ocks: Sho	w Blocks with >	2 🖨 Sequences	RTR77824 RTR77826 RTR77829 RTR77828	AETTTCCATATATTTTAEE AETTTCCATATATTTTAEE AAETTTCCATATATTTTAEE		Sequence Order
Alignment Blo CM_ATXN2_	ock # 9 2	Sequences 4	Block Start 91110	RTR77831 RTR77830 RTR77832	TAAETTTCCATATATTTAE TAAETTTCCATATTTTA TAAETTTCCATATTTTA		Filter:
CM_ATXN2_ CM_ATXN2_	10 2 11 2	2	93729 4216	RTR77834 RTR77833 RTR77836	ATATTTTTAACTTTCCATAT ATATTTTTAACTTTCEATA AATATTTTTAACTTTCEATA		Base Sequence Assay X IC50 GMean (nM)
CM_ATXN2_	.12 2	0	99715	RTR77835	AATATTTTTTAACTTTEEAT		Gene Relative Start
		151 of 217 Alig	nment Blocks shown	21 of 21 Sequence	ces Displayed	Block Start Position: 4216	Ascending O Descending

CERTARA

Where Next...

	Oligos	Peptides	Antibodies
General Representation	Complete for presentation. Sequence parsers created ad-hoc.	Complete for presentation. Sequence parsers created ad-hoc.	Complete for presentation. Sequence parsers from standard formats.
Basic Analysis	Alignment In Design	Alignment complete.	Alignment to be based on Peptide
Advanced Analysis		In Progress: Extraction of sub- sequence/chemical structure	

Questions?

